
RD-R126 874 RN ADAPTIVE FINITE DIFFER ENCE METHOD FOR HYPERBOLIC i/ IN
SYSTEMS ON ONE SPACE DIMENSION REVISION(U) CALIFORNIA
UNIV BERKELEY LANRENCE BERKELEY LAB J H BOISTAD DEC 82

UNCLASSIFIED LBL-13287-REV f/G 12/1i N

smhhhhhhhhhi
smhhhhhhhhhhh
smhhhhhhhhhhh
EhhhhhhhhhhhhI
smhhhhhhhhhhh
mhhhhhhhhhhhhE
Eh111h11ohhhmE-

14)

.~ o 13 2 .0m

1.511111 1.41

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS- 1963-A

LBL-1 3287-rev. (Z 1

AN ADAPTIVE FINITE DIFFERENCE METHOD FOR
HYPERBOLIC SYSTEMS IN ONE SPACE DIMENSION'

Abbreviated Title:
- AN ADAPTIVE METHOD FOR HYPERBOLIC SYSI12S

John H. Bolstad

Lawrence Berkeley Laboratory
University of California

Berkeley, California 94720

present address:
Applied Math 217-50

California Institute of Technology
Pasadena, California 91125

December, 1982

Thi d0-turnn u een a o,

Submitted to

SIAM Journal on Scientific and Statistical Computing

C-C.

'Supported in part by the Oftce of Naval Research under contract N00014-75-C-I 132, and by theL.J Dyrec.or, O.ice of Basic Energy Sciences, E.ngineering, Matherr.atica, and Geosciences Division of the-=- Lu. S. Department of Energy under Contract DE-AC0-76SF0009&

..

' .. , 2o . i i. ._...,:., . .: " " " - -" .- . - . _ " . t i . . , . , . , . " . ; € l , - - : J - a ' -* - , . '4 - ,, ,,j j,

AN ADAPTIVE FINITE DIFERENCE METHOD FOR
HYPKRBOLC SYSTEMS IN ONE SPACE DIMENSION

Abstract. Many problems of physical interest have solutions which are gen-

erally quite smooth in a large portion of the region of interest, but have local

phenomena such as shocks, discontinuities or large gradients which require

much more accurate approximations or finer grids for reasonable accuracy.

Examples are atmospheric fronts, ocean currents, and geological discontinui-

ties.

">In this paper we develop and partially analyze an adaptive finite difference

mesh refinement algorithm for the initial boundary value problem for hypdrbollA6

systems in one space dimension. The method uses clusters of uniform. grids

which can "move" along with pulses or steep gradients appearing in the, calcula-

tion, and which are superimposed over a uniform coarse grid. Such refinements

are created, destroyed. merged, separated, recursively nested or~ moved based

on estimates of the local truncation error. We use a four-way linkou tree and

sequentially allocated deques (double-ended queues) to perform these opera-

tions efficiently. The local truncation error is estimated using a three-step

Richardson extrapolation procedure in the interior of the region, and differences

at the boundaries. Our algorithm was implemented using a portable, extensible

Fortran preprocessor, to which we added records and pointers.

The method is applied to two model problems: the second order wave equa-

tion with counterstreaming Gaussian pulses, and the Riernann shock-tube prob-

lem. For both problems our algorithm is shown to be three to five times more

efficient (in computing time) than the use of a uniform coarse mesh, for the

same accuracy. Furthermore, to our knowledge, our algorithm is the only one

which adaptv es time-dependent boundary conditions for hyperbolic sys-

tems.

"- ii

Key words. hyperbolic systems, adaptive, mesh refinement, finite

differences, local truncation error, partial differential equations, Richardson

extrapolation, wave equation, Riemann shock tube, data structures, macro

preprocessor.

!XoIbiPt

A-1

1. Introductio. Many problems of physical interest have solutions which

are smooth in a large portion of the region of interest, but have local

phenomena such as shocks, discontinuities or large gradients which require

much more accurate approximation or finer meshes for reasonable accuracy.

Examples of this are atmospheric fronts, ocean currents, geological discontinui-

ties, and storm surges.

When the positions of the gradients are known aipriori, and are independent

of time, one can use coordinate transformations, a technique used extensively in

aerodynamic computations, e.g.. Steger and Chaussee [44]. If the position of

the gradients changes as an a priort function of time, the mapping function can

change with time (e.g., flow past a helicopter blade). However, when the manner

in which the gradients move is not known in advance, this technique cannot be

used.

Thc usc of a fine mesh throughout the entire calculation rcgion usually

requires too much computer time and/or storage. An alternative method is to

use an underlying coarse mesh for the entire region, and to superimpose a fine

grid, or grids, on the region(s) where the solution is varying rapidly. The crucial

difficulty is that the refined region(s) must then move along with the rapidly

varying portion of the solution, at all times enclosing this portion.

The necessity for this was illustrated by Browning, Kreiss and Oliger [7].

They computed the numerical solution of an initial boundary value problem

whose exact solution was a rapidly oscillating sine wave. The wave was accu-

rately represented on the fine part of the spatial grid, but when it passed into

the coarse mesh, it was almost completely obliterated. From this it is clear that

the rapidly varying part of the solution must not be allowed to escape the

refinement region.

2

Adaptive methods have been used in other areas of numerical analysis for

many years; some references are given in [5]. The study of adaptive algorithms

for time-dependent partial differential equations is a very active research area.

We will now list several properties wh~ich distinguish our method from others,

and at the same time list a few of the many references to other work.

We should first mention that the methods of Gropp [18], Berger [2] and the

author all follow the strategy of Budnik and Oliger [8], Oliger [33], and Berger,

Gropp and Oliger [3]. Gropp's paper is a test of the feasibility of this method in

two dimensions. Berger's method is for hyperbolic problems in one and two

space dimensions. It uses the same method as ours for placing refinements (a

method which is more general than Gropp's) and, like ours, allows fine grids to

be recursively nested. Berger's method allows refinements to have arbitrary

orientation in two dimensions. Her method does not treat boundary conditions

as ours does. Our data structure is somewhat different than hers, but cannot be

generalized to more than one space dimension.

The most important difference between our algorithm and most others is in

efficiency. On model problems our algorithm is three to five times more

efficient than using a uniform mesh which produces the same accuracy. (Berger

obtains similar efficiency factors, while Gropp's were somewhat less.) Most other

methods fail to discuss this matter, and fail to give computer times for their

methods. An exception is Hu and Schiesser [24], who found their method to be

approximately 1.5 times as efficient on a test problem.

The second distinguishing feature of our method is that it is designed for

hyperbolic systems. Many other methods claim to work on both parabolic and

hyperbolic problems, but their examples are only given for the former. In con-

trast, our method can be used for parabolic problems, but it is not yet efficient

for them since it uses explicit time steps. Our method does not require us to

3

know the position or the direction of characteristics.

We can classify adaptive algorithms as either (a) moving (or deformed) grid

methods. or (b) local refinement methods. In the former, a fixed number of grid

points are present, and they move with the solution (possibly via coordinate

transformations). In more than one space dimension this can lead to distorted

grids. The other approach uses a stationary coarse grid, on which are overlayed

or interpolated finer grid points. To follow a wave, grid points are created or

destroyed as necessary, but grid points are not actually moved. Our method is a

local refinement method, and our refined grids can be created, destroyed.

merged. separated or recursively nested. In some problems there is a shock or

gradient that needs to be resolved at one time, and several at another time (for

example, see our Riemann shock tube problem in Section 8). A method with a

fixed number of points may use too many or too few part of the time. If too few

are used, the grid points may also undergo sudden transitions when another

steep gradient appears. Nedstrom and Rodrigue [23] discuss other advantages

and disadvantages of these approaches. The methods of Davis and Flaherty [11].

Miller [1?], [32] Dwyer, Kee and Sanders [13], Rai and Anderson [39], Brackbill

and Saltzman [6]. and White [47] are moving grid methods. The methods of

Berger, Gropp, Gannon [16), Hu and Schiesser Lam and Simpson [30], and the

author are local refinement methods.

Among the local refinement methods we can distinguish those in which fine

grid points are interpolated, or patched, into the coarse grid, from those in

which the fine grid points overlay (and are separate from) the coarse grid. The

methods of Lam and Simpson and Hu and Schiesser are examples of the former,

while the methods of Gropp, Berger and the author all use the latter approach.

An advantage of the overlay approach is its adaptability to parallel or pipeline

processors. The solution can be advanced (and the error estimated) almost

independently on different grids.

4

The fourth distinguishing feature of our method is that it refines the mesh

in both space and time. Most other adaptive methods use a time step which is

the same at every spatial mesh point at a given time. Since we use explicit

methods, it is essential to allow finer time steps in refinements than in the

coarse mesh. Otherwise, stability would force us to use tiny time steps over the

whole spatial region. To our knowledge, only the methods of the author, Berger,

and Gropp allow this.

Closely related to this is the fifth distinguishing feature of our method: the

use of nontraditional (for numerical methods) data structures. This is neces-

sary to efficiently implement variable numbers of refined grids. Berger has

implemented more complicated data structures in two space dimensions. Other

adaptive methods using nontrivial data structures were developed by Gannon

and by Rheinboldt and Mesztenyi [40].

A sixth notable feature of our mcthod is our critcrion for mesh placcmnt.

We arrange our mesh points to "approximately equidistribute" the local trunca-

tion error (de Boor 1121 and Pereyra and Sewell [3?]). Other methods use meas-

ures such as the gradient, arclength. or second derivative. We feel that these ad

hoc methods may work in certain instances, but are not sufficiently general.

Other methods that use the local truncation error are those of Pierson and

Kutler [38]. Rai and Anderson, and Berger. Gannon uses an analogous criterion

[1] for finite elements.

A unique feature of our method is the adaptive treatment of time-

dependent boundary conditions. Implementing this requires local error esti-

mates at the boundary, a variable number of grid points, and nontrivial data

structures. This is obviously important in applications like limited area weather

forecasting.

'7

5

The final distinguishing feature of our algorithm is its method of implemen-

tation. Fortran is inconvenient because it lacks data structures and control

structures, and other languages have portability problems. So we used an

extensible, portable Fortran preprocessor. to which we added pointers and

records. Stein [45] and Gropp [19] have also considered languages for adaptive

algorithms.

We now summarize what is contained in the rest of this paper. In Section 2

we describe our adaptive mesh-refinement algorithm in detail. We first describe

the continuous problem, the usual first order hyperbolic system on a strip in

one space dimension. Next we describe our mesh structure. A detailed descrip-

tion of the algorithm is then provided, including techniques at boundaries and at

interfaces between coarse and fine meshes. Section 3 discusses the estimation

of the local truncation error in the interior of refinements, at coarse/fine inter-

faces. and at boundaries.

In Section 4 we give a brief discussion of stability. Section 5 summarizes

partial results in [5]. which show how mesh refinement affects the rate of con-

vergence. Section 6 describes the data structures we used to implement the

algorithm. Section?7 discusses the Fortran preprocessor language we used. Sec-

tion 8 provides computational results. As model problems we used the first

order wave equation, the second order wave. equation with counterstre aming

Gaussian pulses, and the Riemann shock tube problem.

2. Mesh Structure and Solution Algorithm. In this section we describe the

differential equations to be approximated. Then we give a recursive description

of our mesh structure and of our algorithm for advancing the solution.

2. 1. The Continuous Problem. Let fl denote the spatial interval a !5 z !9b.

For purposes of analysis we will consider a linear first order, one (space)-

,. 6

6

dimensional, n x n hyperbolic system

Lu a u - A(z.t)ux - B(z,t)u = F(xt), (2.1)

on a "vertical" strip 0 x t I 01, with initial condition

u(z,O)=f(z), = fW (2.2)

and boundary conditions

uI (at) = SU(t)un(.zt) + g(t) t >_ O, (2.3)

un(b,t) = Si(t)u' (b ,t) + g 2(t), t > 0. (2.4)

Here A and B are n x n matrices and F is an n-vector. We have, as usual,

assumed that A has already been transformed into diagonal form by a nonsingu-

lar uniformly bounded similarity transformation T(z,t), so that

A=~u

with T(-,t) and T(x,t) - uniformly bounded, and

Al = diag(icl, 2 ... ICj) < 0,

Al = diag(j+,, J+2 ,) > 0,

U11= (u,(z,t), 2(z,t) UI(X,t)) r ,

]" Ur= (UJ+I(XAt, UJ 2(-T,t)(X,t)) r ,

and

By far the most important restriction is that our problem has only one

space dimension. Even in two space dimensions the problem has severe addi-

tional difficulties, such as irregular geometries, orientation of refinements, pat-

tern recognition, the need for more complicated data structures, and topology
L

of boundaries. The restriction to hyperbolic behavior insures that we can use

explicit time steps. This assumption greatly simplifies both the error estimation

I.

V(_ _ -•: ?-.

7

and the manipulation of moving meshes. However, many computational prob-

lems in fluid dynamics and elsewhere are of this type.

We have assumed that the matrix A is in diagonal form because this makes

it easier to write down boundary conditions (2.3)-(2.4) which yield a well-posed

problem. We have assumed the problem is linear so that we can analyze local

error estimation and convergence (in fact, we shall assume constant coefficients

in Sections 3 and 5). Neither of these assumptions is necessary in practice, as

shown by computations in Section 8.

We assume that the overall phenomena being studied are such that, except

for relatively small regions, a coarse uniform mesh is sufficient to resolve them.

We further assume these small regions change with time in a way which cannot

conveniently be determined a priori,. We also assume that, at any time, these

small regions are approximately the same for all solution components. In other

words, if thc differcntial equations describe velocity and pressure, thcn large

pressure gradients occur in approximately the same regions where large velo-

city gradients occur. Thus we can use the same refinements for each com-

ponent of the solution vector. (The assumptions in this paragraph are necessary

only for efficiency. The method will work without them, but it might reftne too

large a portion of the region)

For purpose of analysis we assume that the solution is smooth. This means

that there are no corner discontinuities, i.e., ul (a,0) = f I (a) and

U11(b .0) = f 1 (b). Furthermore, it means there are no shocks present. These

assumptions enable us to estimate the local truncation error using asymptotic

expansions. These restrictions are not always necessary in practice (see prob-

lem P3 in Section 8), but then our method is not supported by analysis.

2.Z. Mesh Structure. We will now formally describe onr reftned grids. We

will compute on a basic rectangle R = f x T1 whi is subdivided into

8

subrectangles on each of which is imposed a uniform grid (see Fig. 1).

We will proceed recursively by "levels of refinement". The word level in this

context refers not to the time level, but to how fine a grid spacing is. Finer grids

will have higher levels. Let A be the maximum level. On each level

I = 0, 1... .. ,A-i we will introduce a finite number of space-time refinement

rectangles or boxes BI contained in rectangle R. (All such rectangles will be

solid, that is, they include both interior and boundary.) Each such rectangle will

have sides parallel to the coordinate axes, and for I ! 1 each L-th level rectangle

must lie entirely in an 1-1-st level rectangle. Furthermore, no two -th level

rectangles can overlap. The boundary of each I-th level rectangle will be the

boundary of a uniform I+1-st level (space-time) grid. All I+1-st level grids will

have the same space and time steps. Loosely speaking, an 1+1-st level

refinement is one of these grids viewed at a fixed time.

To primc thc recursive pump, we will define the zero-th level spatial divi-

sion points of the interval [a, b] as the sequence of points <za = a, X4 = b >.

Similarly, the zero-th level time division points of the interval [0, T] comprise

the sequence -. =0, t0 = T>. Leth 0 =b -a and k 0 = T be the zero-th level

space and time steps, respectively. We define U0 as the set of four corner points

of the rectangle R.

For I = 0, 1 .. A-i we now form the -th level partition P, of [0, T], which

is a subsequence of the time division points <tn>:

0=t, <t, <t < ... <tI t = T. (2.5)
t02 Ms- I m1 r %8 (2.5)

We have omitted from the notation the dependence of the subsequence <r.> on

1. For I = 0, P 0 is identical to the sequence <t 0 > of time division points. Thus

SO = 1 and mj(0) = 1. For I t 1. P, must contain as a subsequence the points in

the partition P,.

9

This partition divides the region R into L-th level horizontal strips

S,. i = 1, 2, st. For I = 0 the only such strip Si is identical to the rectangle

R. For I - I each of these strips is contained in an 1-1-st level strip, since P- 1

is a subsequence of P1. The partition points are the times when we adjust the

mesh. They must be chosen before the solution of the problem. (The partitions

and strips for I > 1 could be dispensed with if we never adjust the mesh between

coarse time steps.) For I = 1 we have shown in Fig. 1 the time division points

<ta> and the partition P with m4 = 0, ml = 2, ml = 3. and m4 = 5. We shall

denote the partition points P alternatively as

0 = t° < t < t2< ... <t = T. (2.6)

and denote the first level strips Si' by St. Thus St = 0 x (t- 1, t] for

i=1. .

We will now introduce a set of zero or more nonoverlapping l-th level (solid)

refinemnt rectangles

(If g, = 0 the recursion ends.) There is only one zero-th level rectangle B1, and

it is identical to the rectangle R. For I > 1, each rectangle BI is required to lie

entirely in some I-1-st level refinement rectangle Bt - '. The latter will be called

a parent of the former. Each such rectangle B1. will have horizontal sides whose

t-coordinates are required to be adjacent members of the partition P (2.5).

That is, the horizontal sides of the rectangle are the same as the the horizontal

sides of the -th level strip in which it is contained. Since P_ 1 is a subsequence

of P, for I 1 1, we are guaranteed that BI is "vertically contained" in its parent.

For I 1 1, the z-coordinates of the vertical sides of rectangle B, can be any

-th level spatial division point, so long as B1. is "horizontally contained" in its

parent. In other words, let its parent B1.71 have left and right vertical sides with

10

coordinates

z = Z-) = XR1 = a + hia(7r)

and

XZ(.) = a + h-10(7r),

respectively. (Here a(ir) and w(7r) are nonnegative integers.) Then for the coor-

dinates 441) and x,(,) of the left and right vertical sides of rectangle Bt, we

require

< '" ()< (-1) (2.7a)

i.e..

N(-)a(ir) < a(v) < w(v) < N-).(nr). (2.7b)

If the left (right) edge of the parent rectangle lies on the left (right) edge of the

region R, then we allow the leftmost (rightmost) inequality to become "<=".

For - I L 0, let NM and MM1 (the I-th level spatial and time

refinement ratios) be integers greater than one. (Fig. 1 shows the case NM = 3

and MM1 = 2 for I -! 1.) Let li, = ht/N (M and kL+l = k,/M M be the 1+1-st level

space and time steps, respectively. We now define the sequences of (uniform)

1+ 1-st level spatial and time division points

<,''= + + jh 1, : j = 0,1 .1.. I)>,

and

T'+' = <t1+1 = mkt+1 : m = 0,1.. IJ()>,

js=O

of the intervals 0 and [0, T], respectively. They are respectively N) and M (O)

times as fine as the L-th level ones. The set of all points

1 = (Tj]i. t h s)s

occupies the entire rectangle R = 0 x [0, T]. The subset of these points con-

11

tamed in the (solid) refinement rectangle BI is defined to be the (I+1)-st level

(space-time) grid Glt*' occupying BI.. More specifically, if B, occupies the L-th

level horizontal strip SI, then G'+' consists of that subset of U1+ whose z com-

ponents have subscripts

j = a(v)NW'), a(v)N(')+1,(v)N(O), (2.8)

and whose t components have subscripts

M = rri.(/)M(1), 4_ 1()(')+1.....(/)/
().

(Recall that the subsequence <m.> depended on the level 1.) This completes our

recursive definition.

Now we come to the most important definition of this paper.

DEFINITION 1. Let Gt)+1 , I = 0, 1 .. A-i, be an I+ 1-st level grid, occupying an

I-th level rectangle B1., whose mesh points are as given above. Let t be any time

such that

t t 9 t) (2.9)

and let t1+ be the greatest I + 1-st level time division point not exceeding t. An

1+ 1-st level reflnemei at time f, corresponding to B, or 1+1, is a sequence of

ordered pairs

V' (t) = <(+=J >,

where j has the values (2.8). The first components comprise the sequence of

1+1-st level spatial division points contained in the horizontal sides of the

refinement rectangle BI (equivalently, the sequence of z components of the

grid points in G4,+'); the second components are the approximate solution values

evaluated at these spatial points, but at time t l1. Here VJl(t) is an approxima-

tion to the vector u (ZJ+, t).

12

An important property of our definition is that an I +1-st level refinement

exists not only at 1+1-st level time division points V +', but also at "finer" time

division points T s, ... , TA satisfying (2.9). However, solution values for an

1 + 1-st level refinement are only updated at t + 1-st level time division points.

For 1 L 1 let BI be any refinement rectangle, and RI+' its corresponding

refinement. A vertical side of BI which does not lie on the boundary of the

region R will be called a coarse/fine interfce. Similarly, the left or right end-

point of RI+I will also be called a coarse/fine interface if it does not lie on the

left or right boundary of the region R.

The first level (or coarse) space-time grid occupies the whole rectangle

Ric = R. Hence, the first level, or coarse, refinement is present at all times, and

higher level refinements are considered to be superimposed on it. (Strictly

speaking, we should not call this a refinement, since it doesn't refine anything.

We use this tcrminolog; to avoid special cases.) We will assume as given the larg-

est wave propagation speed. This is usually known by the problem originator,

and determines the spacing of the coarse refinement.

Another factor which must determine the spacing of the coarsest

refinement is the wavelength of any "background disturbances" to the

phenomenon of interest (see our model problem PI later in this chapter for an

example). This too is assumed known; for guides to the number of mesh points

needed per wave length, see Kreiss and Oliger [29].

We will now discuss some further restrictions imposed on our refinement

rectangles. We will require that no two -th level refinement rectangles in the

same I-th level horizontal strip can intersect or abut. (But L-th level rectangles

in adjacent strips may abut.) Assume an L-th level strip contains two /-th level

rectangles B and BI, having left and right vertical sides with x coordinates

13

z'(M and z ' v)Z

respectively. Without loss of generality, assume that the left side of the former

is to the left of the left side of the latter, a(,u) < a(v). Then

<,(.u) < av).

This is no restriction in practice; if two such rectangles overlap or abut, we sim-

ply consider them to be one rectangle.

Let X4 = kc/h. Then our construction ensures that N is a constant depend-

ing on 1. For simplicity, our implementation restricts the refinement ratios for

I t I to be the same, i.e., N el) = N and MV') = M, for I = 1, 2. . . . ,A-1. This con-

dition is not essential, but it poses no real restriction, as we will see in Section

8.3. For convergence studies, we shall in addition assume that M = N, so that

= constant, independent of I.

In Sections 4 and 5 we assume that we adjust the mesh only at coarse time

steps. Thus all partitions P are the same as the first level partition. In prac-

tice, we can adjust the mesh more often (or less often) than every coarse time

step, but for each I we always adjust at times which are a multiple of the L-th

level time step. That is, every partition P, is of the form

Ot' <t4 < t'2 < ... <ttf,_l1p4 < t',d = T.

where t = 0(1) is a small positive integer.

The blackened rectangle in Fig. 1 illustrates the possibilities. If we adjust

the mesh only at coarse time steps, then this rectangle contains no mesh points

in its interior. However, if we allow mesh adjustment between coarse time steps,

then the blackened rectangle may contain six subrectangles.

2.3. Operations on Refinements. We now describe the operations we can

perform on refinements. For simplicity, we shall assume that we adjust the

14

mesh only at coarse time steps, and use the notation (2.6) for the division points

between strips.

We shall say that two refinements are equivaent when their first com-

ponents (z coordinates) are the same, regardless of the time or the solution

values. Thus, for all times (2.9) encompassed by the refinement rectangle B ,

the refinements R',I (t) corresponding to B1 are equivalent. In this sense, we

can say that to each rectangle B1. or grid GOf) there corresponds one

refinement. This equivalence concept is useful for describing refinement mani-

pulations which do not depend on the differential equation calculations. Clearly,

only refinements with the same level can be equivalent.

Suppose first that there is an L-th level refinement rectangle BI (I > 0) con-

tained in the strip Sj (2.6). Assume that the horizontal sides of B!, occupy the

interval

Also assume that no part of any 1-th level refinement rectangle in strip Sj-. lies

in this interval. Then we will say that the refinement R'*1 corresponding to BI

has been created at time t = t - '. Similarly, if we replace St- 1 by St~+ and t" -

by t i , we say that R'. has been deleted at time ti.

Now suppose there are two 1-th level refinement rectangles Bk,CS and

BIcS i4 . According to our definition, the refinement R1+1 corresponding to B1

only exists for t i - t & tt . and the refinement R' 1 corresponding to B1. only

exists for ti ! t ! ti+' . We will now examine the possible relationships between

these refinements.

Suppose the rectangles B1, and BI have the same left and right sides,

a(A) = a(v) and w(jA) = cj(v). Then the first components of the refinements

corresponding to these rectangles are the same. By our definition, the

refinements corresponding to BI and BI are equivalent. In this sense we may

15

say that a single refinement now exists for times tl - s; t ic t'" .

Now suppose that the refinement rectangles are situated as before, but

a(su) ! a(v) < c(v) s95~)

(with at most one equality), and no part of any other L-th level refinement rec-

tangle in strip St+1 lies in the interval

Z) S za zK).

Then we will say that the refinement R' + 1 has contracted at t = t' to form the

refinement R' +1 . By interchanging refinement rectangles and strips, respec-

tively, an analogous definition can be given for an ezpanding refinement.

If B' and B1. are situated as before, but

and no part of any other L-th level refinement rectangle in strips St or St+1

occupies the interval

then refinement R' +1 has moved right at t = t to become the refinement Rl 1 .

Analogously, we can define what it means for a refinement to move left.

Finally, suppose rectangle B.' is in strip St as before, but strip St +I contains

two (disjoint) I-th level refinement rectangles BI, and Bf,. with the former to the

left of the latter. Assume that

a~)s otj< w~)< a? < w,)sw?

and that no part of any other l-th level refinement rectangle in strips Si or S+ 1

lies in the interval

x"(') , ().

Then the refinement R' + 1 is said to separate or split into refinements R'+' and

Rl '. Analogous definitions can be given for two refinements to merge into a

third.

The above are typical operations on refinements, but they do not exhaust

the possibilities (for example, a refinement could split into three refinements.

although this is quite rare). Fortunately, however, an exhaustive listing is not

needed. Allothat is required is an algorithm which takes a set of 1-th level

refinements (I > 1) at time t = t i' = 0, 1 s-1 and produces a new set of

such refinements. For each L, once the left and right edges of the new

refinements are determined (by local error estimates), this readjustment can

be done in a single left-to-right scan of the existing -th level refinements.

In Section 6 we will explain how these operations are implemented.

2.4. A Model Problem. We will now introduce our first model problem, which

will be used in some of our computations in Section 6. It is the first order wave

equation ("color equation")

U,= -cu, a z ! b, 0! t, 0 < c, (PI)

U('°) g(zz), = z b.

u (0,t) g(-t), 0!5t

with exact solution u(z,t) = g(z-ct). We take a = 0, b = 4, and c = 1. The

function g is taken to be a Gaussian pulse, traveling to the right with speed c,

superimposed on a sinusoidal background,

g (z) = exp(-a(z +Y)2) + 0. isin27T(z +)),

with a = 200. The parameter a control the steepness and thickness of the pulse.

For a = 200, the pulse occupies about 8 percent of the interval [0, 4]. This

models more realistic problems such as an atmospheric front or storm surge.

I

i- .

17

2.5. Solution Algorithm. We now describe our algorithm. As in the initial

value problem for ordinary differential equations, we will need to give a toler-

ance 6 on the local truncation error, which will be used to decide where to refine

the mesh. (We have only used absolute error since all of our example problems

vary between 0 and 1. In general, one should use a combination of relative and

absolute error, as in Shampine and Gordon [42].)

For the initial value problem for o.d.e.'s, Stetter [46], and others, have

shown how to estimate (but not control) the global error while the solution is

being computed. This requires only a small amount of additional computation

and storage for that case. Further investigation would be needed to apply this

to the initial boundary value problem. But even if were done, one would still

need to prescribe a local error tolerance.

Since our refinements are defined recursively, we can define the algorithm

rccursivcly. We will usc an Algol-style notation. A non-recursivc description of

the same algorithm on a model problem was given in [5].

procedure advance.solution(L, t);
real t; integer 1, i;
value t ;

comment advance solution from t to t + M(I-O)i;
for = 1 to M(1-0) do

begin
if mesh adjustment time at this level

begin
estimate. error(L);
if I < max.level then adjust.mesh(l + 1)
end;

if level I + 1 exists then advance.solution(l + 1, t);
compute the solution at time t + k, on all level I refinements;
Sett 4- t + ki
end;

if I > 1 copy (project) solution values from this
refinement to its parent refinement at level 1-1;

end advance.solution;

I = 1;
t = 0;
Obtain initial values on coarsest mesh (level 1);

18

advance. solution(l, t);

Thus, we advance on the highest level refinements first, then the next

highest. etc. (One can also proceed from the coarsest level to the finest, and

this may be advantageous in more space dimensions.) For example, if our prob-

lem has three refinements. (one each at levels 1, 2, and 3, respectively) and

refinement ratios N =M =3, we compute the solution at the next coarse time

step by advancing the different levels in the following order: 3, 3, 3, 2, 3, 3, 3, 2,

3, 3, 3, 2, 1. (Notice that each recursive activation of our procedure has its own

private copy of i and t, which may be different from the values of '. and t at

* other levels. Thus t must be called by value and not by name or reference.)

We now explain the steps of the algorithm in more detail.

"Mesh adjustment time" means that the time level is one of those occurring

in the partitions P, given in Section 2.2. If the time t is a member of one of the

partitions P1, we estimate the local truncation error (see Section 3) that would

be made if we took one forward time step in the level I refinement, but we do

not actually take the step. Mesh points whose error estimate exceeds the local

error tolerance are marked as needing refinement. These points are grouped

* into intervals. Several extra "buffer" mesh points are added to both ends of

each such interval. This will be explained later.

In general, there may be more than one refinement at each level (except

the first). In that case, the operations are done for all refinements on a given

level, starting with the leftmost refinement.

To adjust the mesh, we compare the intervals just produced with the exist-

ing refinements. If these are not identical, refinements may have to be "moved",

created, deleted, merged or separated. If a refinement on level I moves into a

4 region formerly occupied only by a refinement on level 1-1, we may need solu-

Lion values that do noL yet exist at mesh points in refinement I. These are

19

obtained by linear or quadratic interpolation in space from solution values on

the I - 1-st level refinement.

* Creation of a new refinement is done the same way, by spatial interpolation

from its parent refinement. At any mesh adjustment time, an 1-i-st level

parent refinement can give birth to any number of i-th level refinements, but no

higher level ones. An exception is made at t = 0. If refinement(s) of the coarse

mesh are needed at that time, we obtain the new solution values directly from

the initial function f rather than from interpolation. That is, we take as initial

values

vJ() f(a + jht). (2.10)

where 0. 01,, N(O) when I = 1, and j has the values given in 12.8) for any

other refinement introduced at t = 0. This allows us to add as many levels of

~refinement as are initially necessary. Thus, the method performs properly even

when the initial mesh is "too coarse".

If a refinement occupies a spatial interval 1, it can be deleted when it has

no children, and the local error estimate of its parent in interval I is below the

tolerance.

We now explain the "copy" operation. Certain points (z, t) of our region R

(such as F in Fig. 2) are covered by mesh points in refinements at more than one

level. (This is done for ease of implementation, and arises because we overlay,

- . rather than patch or interpolate refinements.) We always want to use the solu-

tion values computed on the finest (highest level) mesh, so for these points we

must project (copy) the values obtained on a level I refinement to the appropri-

ate positions in the parent (level I -1) refinement.

It remains only to describe our difference approximations.

20

2.6. Difference Approximations. We first define the forward, backward, and

centered difference operators D,, DL-, and Db, operating on L-th level

refinements:

D1+v(t) =14-(E - 1)v.,(t) = (v,+(t) - v(t))/h.

D'-_vt) h-I(l - E- 1)v,(t) = (v.(t) - v,-l(t))/ht,

Dv.(t) = (2hj)- 1(E - E-),(t) = (v,+I(t) -v _V1 (t))/2M,

where we have omitted the superscript I on v.

To advance the solution one time step from t to t + k, we will treat

separately the interior of a refinement, coarse/fine interfaces, and boundaries.

In the interior of an 1-th level refinement we will use explicit two (time)-level

difference approximations to (2. 1),

I,(t+kj) = Q0t,(t) + kF,(t). (2.11)

where t = tM.

Q0 = QO(I) A, (z A1 4jh, t. h,)EI,.

E = E(1) is the shift operator

E~.,+(tt).

q and r are nonnegative integers, v' (t) is an approximation to u(zl, t), and

F4.(t) = F(4 . t). (By the iviterior of a refinement, we mean all its points except

the r leftmost and q rightmost ones.) The coefficients Aj are assumed to depend

smoothly on their arguments. For example, the interior Lax-Wendroff approxi-

mation to our model problem (with t = t' a inki) is

S(t +kj) = (I - ck 1 D6 +)jc 2k 2DIDI)vj(t).

The restriction to two-level schemes is necessary to simplify manipulations

with refinemenLs. (When the spatial mesh is adjusted at time

. _ . . . - . ,-*: , . _... , w , . = . ., = ,

21

t, i = 0. 1.. s-1, it would be awkward, and require more storage, to adjust

the mesh at previous time levels too.) This also simplifies error estimation, as

will be seen in Section 3. (This restriction does not exclude two-level schemes

with fractional time steps, such as two-step Lax-Wendroff.)

The restriction to explicit schemes is more fundamental. This is no restric-

tion for purely hyperbolic problems, but can be a restriction for more compli-

cated problems (e.g., coupled heat and sound). Since our algorithm calculates

solutions at a given time level piecewise in various parts of the interval

a z b, this restriction is not merely for convenience.

In Section 3 we will also require that the local truncation error (per unit

time step) of the interior approximation must have the same order in space and

time. Since we will most often use interior approximations which are second

order in space and time, this restriction is not too severe.

At coarse-fine interfaces (between level 1 +1 and level I refinements) which

do not abut boundaries, we use a hybrid method, the coarse /fine approzimation

[9] corresponding to difference method (2.11). We apply the right side of (2.11)

to solution values on level I with space step hi and time step ik&+1, for

i = 1, 2, • • - , M (that is, replace Xj by ikL+I/h,), and store the solution value on

the level I + 1 refinement.

For Lax-Wendroff applied to our model problem this is

Vxj~~ (I -ik+1 cikl+1 D , + Yc&i~k +1D'+DL.)24'(t1An).

Fig. 2 shows the stencil at the interface between a refinements on levels 2 and 3

(I = 2) when N = M = 3, so that the third level space step h. = h 2/ 3 and the

third level time step k3 = k2/3. When i = 1, points A, B, and C are used to

advance to point D. When . = 2, points A, B, and C are again used to advance to

point E, and when i = 3, the same points are used to advance to point F.

22

For a difference scheme (2.11) whose stencil is more than three mesh

points wide, we will need to use the coarse/fine approximation r times in Fig. 2

(and correspondingly q times at the right end of a refinement). This is done,

e.g., for r = 2. by using the stencil illustrated in Fig. 2 to get point D, then shift-

ing the stencil one finer mesh point to the right to get the point to the right of D.

(This involves a spatial interpolation in the coarser mesh, which is done as in the

mesh-adjustment step).

Finally, boundaries are treated the same as with a uniform mesh; if an L-th

level refinement abuts the left boundary, we set

V1 (+k1 S~)v I(t -auic)+ g'(t). Ai=0,1. r-1, (2.12)

where

s) (1) =] cjC)(z+jh, t-a, h,)E, a 0,-i

-n t = m c, T -! r, and C = 0. The approximation at the right boundary

is analogous. For our model problem we use the prescribed values

V4(t +k1) = g (-c (t +))

at the left boundary; and upwind differencing

vJ(t+c) = (1 - cLkD_)vJ(t)

at the right boundary.

Once again we have restricted ourselves to two time levels, for the same

4l reasons as before. We allow ourselves implicit boundary conditions here

(S't) 0 0) since we can first solve for the points on the right hand side of (2.12)

using the explicit interior approximation.

An extremely important feature of this method is the use of a buffer on

either end of any refinement (except the coarsest one). If we are estimating the

K . - -

23

truncation error for the refinement frJl and the error tolerance is exceeded

between , = a and j = w, then we instead refine from j = a - b, to j = w + bi,

where bL is the buffer length for refinements of level 1+1. That is, both ends of

the I + 1-st level refinement are padded with b, extra cells of width hg. In gen-

eral, if our /-th level refinement requires several intervals of /+1-st level

refinement (according to the error estimate), then each such interval is padded

as above. (This may cause some I + 1-st level refinements to merge.)

How do we choose bg? From Fig. 2, we see that bi should be at least one,

because we use the coarse/fine approximation. For safety we make it two. We

shall assume that the (given) maximum wave speed is c. For simplicity we shall

assume that all partitions PL, I > 1, are the same, and that we check the error

every - coarse time steps. Therefore, in time k, a wave could travel left or right

a distance of cuik I = ci6XhI = c 4XIN 1-1 h, or c,\XNl - cells of width h. (Here

the 1 -1 is an exponent, not a superscript.) So we take b, = 2 + fcaXiNI- 11, where

rzl is the ceiling function (the least integer greater than or equal to z). (For

difference approximation (2,11), b, must be modified by replacing 2 by q+1 at

the left end of a refinement, and by T+1 at the right end.) Obviously, higher level

refinements have larger buffers.

The buffer mechanism has several beneficial consequences. First, and most

important, it insures that the rapidly varying part of the solution does not

escape into the coarser region. As we saw in Section 1, this is absolutely essen-

tial to the success of the algorithm. Secondly, this policy allows us to use

difference approximations at coarse/fine interfaces which would otherwise not

be accurate enough in the fine mesh. We can also estimate the local truncation

error at coarse/fine interfaces in a very simple manner (see Section 3.2). Third,

it allows "smooth" transitions in mesh width. That is, a level I refinement can

abut a level I+1 or I-1 refinement, but not others. This is important when using

recursive refinements. Fourth, it keeps the refinements from splitting into tiny

*. . *. - . ~ 2

pieces, because level 1+ 1 level refinements which are closer than 2b, level I cells

apart (before buffering) are joined together. (If the local truncation error were

large in absolute value but suddenly changed sign, this might cause splitting into

pieces.) We make this condition even more stringent by joining together any

level I +1 refinements which are less than 2 bg +2 level I cells (of length hl) apart

(before buffering). Fifth, buffering allows us to specify a priori the times to

check the local error (and adjust the mesh). In particular, we need not check

the error at every (fine) time step (Section 8 shows that this is very expensive).

We can instead check at every coarse time step, or even every 13 coarse time

steps, where 15 is a small positive integer. Sixth, buffering contributes greatly to

the robustness of the algorithm. Buffers make the algorithm relatively insensi-

tive to small inaccuracies in the local error estimation.

Let us comment on the storage required for this algorithm. If we use a

two-level method and perform the operations in the order given, then we need

two levels of solution values, just as for a uniform mesh. As soon as all the solu-

tion values in a refinement at a new time level are known, we can overwrite them

on the old solution values. A slight amount of additional storage is needed for

pointers and indices; this is minuscule compared to space for solution values.

Next, free space is needed to separate the solution values on refinements. The

amount is variable, but can be chosen quite small (see Section 6.3). Finally,

storage is needed for error estimates; but these can be done a refinement at a

time, so we only need two vectors (when solving a scalar equation), each the size

of the largest refinement. We did not implement our algorithm in a way which

minimizes the amount of storage.

3. Estimation of the Local Truncation Error. In this section we show how to

estimate the local truncation error. We examine two methods for estimation in

the interior of refinements, differences and Richardson extrapolation. Then we

25

propose methods for estimating the error at coarse/fine interfaces and at boun-

daries.

The first important conclusion of this section (and of the computations in

Section 8) is that several methods can be used to estimate the error, both in the

interior and at boundaries. (In [5] we examined two other methods, neither of

which is as useful.) Thus our algorithm is quite general as well as robust. The

second important finding is that the Richardson method is more convenient in

the interior, and differences are more convenient at boundaries.

For simplicity, we shall write all approximations as occurring on a uniform

mesh. We will always assume that A = k/h = constant, and that the solution of

the differential equation has sufficiently many derivatives. When we speak of

asymptotic estimates and leading terms, we shall always mean "as h -, 0".

3.1. Two Methods. We now explain two methods for estimating the leading

terms of the asymptotic expansion of the local truncation error. These methods

require extra computations, in addition to those required to compute the solu-

tion. We first examine the interior of a refinement.

3.1.1. Differences. We will illustrate this method on an example. The local

truncation error for the Lax-Wendroff approximation to problem PI on a uniform

mesh with stencil centered at (z,t) is

j (-kaug (zt) - hu. (z,t)) + 0(h (3.1)

We use the differential equation to replace t derivatives by z derivatives in this

expression. We then obtain

clc-u,(z,t)(cIX2 - 1) + 0(h

We may now approximate u, by a five-point divided difference at points in

the interior of a refinement. Specifically, with t dependence omitted,

26

u. (z) (-2u(z-2h) + 4u(z-h) - 4u(z+h) + 2u(x- +2h))/4h.

3.1.2. Richardson Extrapolation. We shall apply this method (which was

suggested by J. Oliger) to our linear hyperbolic operator (2. 1). In the interior of

a refinement we approximate this system by any linear multi-(time) level expli-

cit difference scheme whose local truncation error per unit time step has the

same order p in space and time:

v.(t +k) Q Q(h)va4t) m Q.u,(t-ak) + kF,(t), Y r, T +1, . N0-q. (3.2)

Here z , a a + vh, t =tm m ,

QQ= Aj,(Xy+jh, tOa, h)EJ a=0, 1. p. (3.3)

the Ajo are matrix coefficients, and E is the spatial shift operator.

The local truncation error of method (3.2) applied to (2.1) at the point

(x. t) = (z, tin) is given by

u (x,t +k) : u Oi(x,t -ak) + kF(z.t) + k (hP T,(z.t) + kP U,(z.t))
0=0 (3.4a):~ 0o(hP +2), (.

where T, and U, are sufficiently smooth functions of z and t. Symbolically,

u(z,t+k) = Q(h)u(zt) + kF(zt) + k r(z,t). ,3.4b)

For the global truncation error e (x,t) = u(z,t) - v,(t) we obtain the expansion

e(z,t+k) = Q(h)e(z,t) + k r(Xt) (3.5)

4 by subtracting (3.2) from (3.4). We shall assume that the difference approxima-

tion is defined for aL (z,t), not only at one set of mesh points.

To use the Richardson method, we take one (time) step of the approxima-

U tion (3.2) with z = xi, t = tin, using mesh sp'acing h in space and k in time. (See

Fig. 3 for a two-level scheme with q =r 1 1, with stencils shifted horizontally for

Ii

27

clarity.) We then repeat the step using (3.2) with tm replaced by t,,+, and the

same mesh spacing, obtaining the approximation uv(t +2k). (Before performing

this second step, we will need to generate more points on level t = (+ 1)k by

applying (3.2) with (zi,.tm) replaced by (Zv+j.tm), j = -r,-r+1. . .. 0, q.

Thus in practice this estimation is done for all interior points of a refinement at

once.) Then we start over at (z,t) = (z, tm) using (3.2), but with stencil spacing

2h and 2k (i.e.. replace jh by 2jh and k by 2k in (3.2) and (3.3)), obtaining the

approximation v2) (t +2k). We then subtract the two approximations obtained

at level t,1+2 , and divide by 2P+1 - 2 to obtain the desired estimate.

We shall prove the validity of this method when both the differential and

difference equations have constant coefficients (they may not depend on z or t

but those of the difference approximation may depend on h when B in (2. 1) is

nonzero). However, our numerical results in Section 8 will show that this pro-

cedure is applicable in much more general circumstances. In practice, our inte-

rior difference approximation will always be two-level (p = 0). Here we do not

rewrite t derivatives in the local truncation error in terms of z derivatives.

THEOREM 1. Approzimafte the hyperbolic operator (2. 1) for the Cauchiy prob-

lem by the consistent multilevel explicit interior difference scheme (3.2).

Assume that both operators have constant coefficients. If the undifferentiated

term Bu in (2.1) is nonzero, assrume that the coefficients (3.3) in the difference

operator are smooth functions of h. Assume that the local truncation error per

unit time step r (3.4) has the same order p in space and time, that the solution

u of the differential equation and the global error e = u - v are sufficiently

smooth functions of x and t, and that X = k/h = constant. Then we can esti-

mate the (lowest terms of the asymptotic ezpansion of the) local truncation

error kr(z,t) at the point (z,t) = (Z .tm) in the interior of a refinement using

the Richardson method, and

28

k'T(x,t) k(hP T'(x.t) + kP Ul(x,t)) + O(hP+2)

- (v,,(t +2k) - V 2) (t +2k))/(2P+I - 2) + 0(hP"2),

,here T1 and U, are sufficiently smooth functions of x and t, v,(t+2k) is the

approximation obtained by appljing one step of (3.2) with t replaced by tn.

and mesh spacing h and k, and v (2)(t +2k) is the approximation obtained by

applying one step of (3.2) with (x.t) = (Zvt,,,) and mesh spacing 2h and 2k.

Proof. The local truncation error eC)(X,t +2k) = u(x,t +21c) - v 2) (t+2k) of

our double size step is, to leading order terms, 2P+, times the local truncation

error for a single step. That is,

e)(Z,t+2k) = Q(2h)e (x,t) + 2P +Ik T(z,t) + O(hP 2), (3.6)

obtained by replacing h by 2h and k by 2k in (3.5). (From this formula and

(3.3) we can see that using a scheme with more than two time levels will entail

storing many previous time levels of the solution. This would be highly impracti-

cal in multidimensional problems)

We apply two single steps of the method to the error e (x. t). Thus we

replace t by t + k in (3.5) and substitute (3.5) into the result. This yields

e(x,t +2k) = Q2(h)e(x,t) + k (z,t+k) + Q(h)kr(z,t)

= Q(h)e (z,t) + kr(x,t) + (1 + O(h))kr(x,t) + O(hP 2)

= Q2 (h)e (x,t) + 2k r(z,t) + O(hP+2).

Here we have expanded the first T" in a Taylor series about (x,t) and have

expanded Q using the consistency. (The consistency relations express the

coefficients of the power series in Q in terms of the coefficients of the

differential equation, hence the former are indeed bounded.) We subtract this

equation from (3.6) to obtain the computable quantity

v'(t +2k) - v (2) (x,t +2k) = e (2)(X,t +2k) - e (z,t +2k)

S[Q(2h) - Q(h)]e(z,t) + (2P' - 2)k'r(Xt) + O(hP+2).

* *.* * .#77, -7 7-

29

This will yield our result if we can show that the bracketed expression is

O(hP S). Since Q(h)" I + 0(h) it is clear that Q2(h) and Q(2h) agree up

through and including first order terms in their formal power series expansions.

So we must show that the terms with coefficients h2 in the bracketed expression

are O(hP+2). Now e is the same order 0(hP) as 'r for the Cauchy problem. since

we have assumed smoothness of solutions and error. Hence the terms in ques-

tion are 0(h 2) times derivatives of e, hence 0(hP+2). This completes the proof.

We have called this a Richardson extrapolation method, but we are using it

in a non-traditional way. Both our method and the traditional approaches (for

o.d.e.'s and elliptic p.d.e.'s) improve the accuracy of the approximate solution

by estimating the local truncation error. But we use the estimate to decide

where to refine; the traditional approaches add the estimate to the approximate

solution. (Doing the latter would not be useful to us, since our estimation is not

being done at every time step.) As a consequence, the traditional approaches

improve the order of accuracy of the basic difference scheme; our method does

not.

In both error estimation methods, the quantity we control in the interior is

not the local truncation error, but the local truncation error per unit time step

I -r(z, t)I - 6,

where 6 is the local error tolerance, and I'I- denotes the maximum absolute

value of all components of an n-vector at the position (z, t). Thi. s because one

power of h in accuracy is lost in going from the local truncation error of the

interior approximation to the global error [21

Our computations in Section 8.6 of [5] show that for our model problem P11,

either of our methods produces approximately equally accurate estimates of the

local truncation error in the interior. And clearly, Richardson estimates are

more expensive to compute than diffcrence estimates However, the Richardson

30

method is considerably more convenient to use in the interior of refinements.

The difference method requires us to explicitly compute the local truncation

error, and then to replace t derivatives by x derivatives. Even with a symbol-

manipulation program like MACSYMA, this can be exceedingly cumbersome for

realistic coupled systems. The Richardson method makes possible an (almost)

automated approach to local error estimation. One need only know the order p

of the method and the factor 2P+i-2 used to divide the difference v, - V2) of

the two approximations at time t + 2k.

3.2. Coarse/Fine Interfaces. Let us now discuss the modifications needed

for coarse/fine interfaces which do not abut boundaries. For concreteness,

assume that an 1-th level refinement R, has a descendant 1+1-st level

refinement R+ I which does not abut the left or right boundaries x = a or z = b.

This introduces two coarse/fine interfaces, namely, the ends of R1+ 1. (See Fig. 2

for the left end of Rl+ 1 .) Recall that, the last time we estimated the error, we

added enough padding or buffering (see Section 2.6) to both ends of R1+ 1 to

ensure that waves could not escape it, plus two extra level I (spatial) cells. This

guarantees that we will not need to refine the ends of refinement R1+1 (unless

they abut boundaries) and assures "smooth" mesh transitions. Since our local

truncation error estimates are used only to decide where to refine, we can safely

set our estimate at the ends of R.+j to zero.

The next question is the choice of estimator at mesh points which are one

(spatial) mesh point on the "fine" side of a coarse/fine interface, or one mesh

point away from a boundary. (This is for the case of a stencil with three adja-

cent spatial points, i.e., q = r = 1 in (2.11) or (3.2). In the case where q or r is

greater than one, similar considerations apply to the q or r points on the "fine"

side of the interface.) Fig. 3 shows that the Richardson method does not yield an

estimate here. We also set this estimate to zero, for the same reasons as before.

7 7- .77**7

31

3.3. Boundaries. Let us consider local error estimation at boundaries. On

the left boundary, there are J boundary conditions specified for the differential

equations (2. 1)-(2.4). We can approximate these in the obvious way with no local

truncation error. We will call these "exact" boundary approximations.

When r ! 1 in the interior difference approximation (2.11) or (3.2), then we

nced n -J "extra" boundary conditions at the left boundary,

V,0t+k) = t Sk$'4 (t -k) + gjt), A = 0, (3.7)

where S?) is as given in (2.12), but with the appropriate time level. If r > 1. we

also need n(r-1) additional boundary conditions of type (3.7) for At = i ..., r-1.

(Similar statements hold at the right boundary, with J replaced by n -J and r

replaced by q. We will only discuss the left boundary; the right is similar.) We

will first consider the extra conditions; at the end of the next subsection we shall

examine the "exact" boundary approximations.

The local truncation error k of (3.7) is

U(zj t+k) = t S?'u(x,t-a*) + g,,(t) + k=0(zt), 1 = 0.... r-1.

For a restricted class of boundary approximations, it is tempting to recycle

Theorem 1, using boundary approximations in place of interior operators.

Unfortunately, this fails because the boundary operator was not the only opera-

tor used to produce solution values at previous time levels. (For example, if we

use the first order upwind boundary approximation and the Lax-Wendroff inte-

rior approximation on our problem P1 (the first order wave equation), then we

apply the former three times and the latter once to obtain a boundary esti-

mate.)

Thus, the Richardson method is not very useful at boundaries for several

reasons. First, we must do a complete error analysis of the Richardson method

32

with both boundary and interior stencils for each individual problem. (We did

this for problems P1 and P2; see Section 8.7.) This cannot be done in an

automated way. Second, there are relatively few boundary approximations

which have the same order spatial and time error. Third, this method does not

work for implicit approximations.

So we must use differences. In contrast to the interior approximation, it is

usually practicable to write down the local truncation error for the boundary

approximation, and rewrite t derivatives in terms of x derivatives. For example,

in our first order wave equation, if we use upwind differencing at the right boun-

dary

v,(t +k) = v.(t) - cX(v (t) - ,(t)),

the local truncation error is

-(kuu - cXh 2u.) + 0(hs);

replacing t derivatives by z derivatives yields

}: h(cX-l)u, + O(h).

We then replace the u. term by a three-point one-sided difference.

The local truncation error for extrapolation boundary conditions

(hD+Yvo(t+k) = 0. for flxedj > 1

can only be estimated by differences. As an example, forj = 2, we estimate the

truncation error

h 2u. + 0 (h3)

by using a four-point one-sided difference (since the three-point estimate yields

zero).

41 In Section 8.7 we numerically compare different methods of error estima-

tion at boundaries.

-.. * ~ - -* --

.. k * . -

~33

Gustafsson's [21) analysis and our computations in Section 8.5 show that

the order of accuracy of the boundary approximation may be one order lower

(but not less) than that of the interior approximation, in order to preserve the

global order of accuracy, which is then the same as the order of the local error

per unit time step for the interior approximation. This means that when we are

deciding whether to refine at the boundary, we should not control the local error

per unit time step, but instead the local error,

jkT.Ttj.! 6.

3.4. Boundary Anomalies. We will now discuss an anomaly which arises fre-

quently in model problems, but quite seldom in realistic problems. This prob-

lem can only arise with (a) a single scalar equation; (b) an n x n system which

can be decoupled into independent subsystems; or (c) a system with the pro-

perty that all the characteristic variables at a boundary are inflow variables, i.e.,

all the characteristics point into the region (e.g., supersonic inflow). If this is

the left boundary, then for problem (2.1)-(2.4) in diagonal form, the boundary

condition (2.3) has SR = 0 (since u n has no components, i.e., u = ux).

This problem arises because no coupling occurs between inflow and outflow

variables. Using the obvious difference approximation to these inflow boundary

conditions in the differential equation (the so-called "exact" boundary approxi-

mations) yields zero local truncation error.

Examining our problem P1, we can see a possible difficulty with using zero

in our error estimation. The left boundary condition contains a forcing (inhomo-

geneous) term g which results in the wave entering the region. Clearly, we want

to put refinements around any "large" wave entering the left as soon as possible.

If we set the truncation error estimate to zero at the boundary, we will not

detect the wave until it has already entered the region. This can be remedied by

trcating the forcing term gn org 2 of (2.3) or (2.4) as generating a fictitious local

- - -. - IR

34

truncation error. For our first order wave equation, where u (O,t) = y twe

write down the local truncation error (3. 1) for the interior approximation, then

replace x derivatives by t derivatives, using the differential equation. Since

utts (0, t) = 98t we can analytically differentiate g to arrive at the result. This

procedure was used in our computations with problem P1 (see Section 8.4).

(Notice that we used an interior error for a boundary approximation, and then

controlled the local error per unit time step. We could equally well have used

the boundary error, which depends on ugg and controlled the local error. In

either case we would control the same power of h,)

in case (c), we may also proceed as in our first order wave equation. For a

local truncation error of the form

caum +1 fll (3.8)

we rewrite x derivatives in terms of t derivatives using the differential equation,

u. = A (u, - Bu -f)

and replace the first term in (3. 8). Since us~j, (9 I)tu, we can again analytically

differentiate to arrive at the result. In practice, the rewriting may be cumber-

some.

In the vast majority of cases, our problem will not have property (a), (b) or

(c). Then some of the components of the difference approximation have nonzero

local truncation error, and our usual error estimates for these component(s)

will detect any incoming wave, since the boundary conditions are coupled. This

technique was used in our problem P2 (the second order wave equation) in Sec-

tion B.

4. Stability. In this section we give a brief discussion of stability.

We begin with a definition. The square of the (discrete) 12(x) norm of an n-

vector v defined on our refined grid at time 0,. i =0, 1, s is a sum of

35

terms, one for each mesh point existing at the given time. (If a point (z, t) is

covered by more than one grid point at different levels, use the finest one.) Each

term is of the form hi tju(tON. where i is the interval to the left of the grid

point, and I'I1 denotes the sum of squares of the components of the n-vector.

(At the left boundary, use the interval to the right of the mesh point.)

The usual definition of stability for the initial boundary value problem is

Definition 3.3 of Gustafsson, Kreiss and Sundstr6m (22] (hereafter referred to as

the GKS definition). But there are several problems with this approach, if we

wish to use this definition to prove convergence.

The GKS definition assumes that the initial data function f is zero. This

may be acceptable for t = 0, but after we integrate over the horizontal strip S1 ,

we in effect start a new initial boundary value problem at t = t', and now the

"initial" data are not zero. It is difficult to incorporate a nonzero f into the GKS

definition, since it was derived using Laplace transform. However, it is neces-

sary if we wish to use it to prove convergence. For, in an interval 0 ,r t !9 T the

number of strips Sj becomes unbounded as h -. 0. The solution at t* = T

depends on the values of the solution ("initial data") at all previous strips, but

this dependence on values at times t -1 , to t -2 t 1, has to be removed if we

want to prove convergence. This can only be done if f appears explicitly.

A second difficulty is related to the first. The GKS definition assures us that

exp(-at) times the solution is in L2 (zt) (the usual discrete Hilbert space in z

and t), but for any fixed t does not assure us that the solution is unconditionally

in 12 (z) (the discrete Hilbert space in z). (Compare Theorem 3. 1, GKS.) In order

to integrate over a new strip Sj, we wish to treat the solution values at t = t - '

as "initial" values, and this requires that they be in 12(z).

For these reasons, Oliger [4], [36] has proposed a new stability definition. It

applies to approximations in any number of space dimensions, and is the

36

discrete analog of the well-posedness condition for differential equations. We

state it for a problem in one space dimension.

DEFINITION 2. Let X = k /hi = constant, independent of 1. Assume that we

adjust the mesh only at coarse time points. The difference approximation (2.10)

- (2.12) on our region R is stable for a refined mesh (as described in Section

2.2) if for any T > 0, there exists a constant Kr > 0 such that, for all positive

integers s, all sets of time division points (2.6), all k, > 0, L = 1, 2. A. satisfy-

ing our restrictions for refined meshes, and all F, g#, 1, and f. an estimate

"+". I()lL + ,,
tal Mo

!KT If 16z + IlFIL.[C.Tj + IW~t11t (tt 1)J

holds.

Here we have not defined all our norms, and have altered our notation [5]

from Section 2. So we shall explain the meaning of the terms.

The first term on the left is the discrete L(z) norm (just defined) of the

approximate solution at time t = T. The second term is the sum of discrete

12 (t) norms of the approximate solution at the boundaries, one for each strip Si .

The first term on the right is the discrete 12 () norm of the initial function. The

second term is the discrete 2z, t) norm of the inhomogeneous forcing function

- in (2.11). The third term is the sum of discrete L2(t) norms of the inhomogene-

ous boundary terms (2.12), one for each strip St. Finally, the fourth term is the

sum of errors which arise when we interpolate from a coarse mesh to a finer one

. during mesh adjustment or creation.

For a uniform mesh, we believe that a scheme is GKS stable if it is stable in

the sense of Definition 3.6, either for a quarter-plane or strip problem. We

believe that the converse is not true in general; that is, the new definition is

stronger.

37

A necessary part of any stability proof is stability of two quarter-plane prob-

lems joined along a coarse/fine interface. This question has been examined

(using the GKS definition) in Ciment [9] and Oliger [35] for the case of equal time

steps on both sides of the interface. Oliger found that if leap-frog was used on

both sides of the interface, certain restrictions on the refinement ratio needed

to be made. But if the difference scheme was dissipative on one side of the

interface, all stability problems vanished. Berger [2] proved the GKS stability of

the Lax-Wendroff method on a model problem along a coarse/fine interface with

unequal time steps. For these reasons we have used a dissipative scheme in all

our calculations.

5. Error Analysis. This section summarizes partial convergence results

which give a theoretical justification for our algorithm.

It is clear from the description of our algorithm (and from the computa-

tions in Section 8.5) that mesh refinement does not increase the (global) order

of accuracy of a difference approximation (compared to using a similar approxi-

mation on a uniform mesh). How then does mesh refinement achieve its

efficiencies?

In [5] we gave the answer using a proposition which we did not prove, but

which is well-supported by computational evidence (see Section 8). It is the

direct analogue of Gustafsson's [21] result on the rate of convergence of

difference approximations to the initial boundary value problem for hyperbolic

systems in one space dimension. Our proposition states that a result similar to

Gustafsson's holds when (a) we replace a uniform grid by our refined grid; and

(b) the difference scheme is stable according to Oliger's stability definition

rather than the GKS definition. Using the norms given in the previous section,

this proposition states that the discrete L norm of the global error at time

t = T is bounded by a constant K1 times a sum of four terms These terms are

38

the discrete 12 norms of the interpolation error, and of the local errors of the

interior, interface, and boundary approximations.

This proposition answers the question, How does the order of accuracy of

the interpolation, and of the interior, boundary and interface approximations

affect the global error? In particular, suppose that one uses an 0(h2) approxi-

mation in the interior of reftinements and at coarse/fine interfaces. Also sup-

pose that one uses 0(h) boundary approximations and linear interpolation

(O(h 2)) to obtain solution values on 1+1-st level refinements from L-th level

refinements. Finally, assume that this scheme is stable in Oliger's sense. Then,

subject to certain compatibility and smoothness assumptions, the proposition

states that the global error is 0(h2).

Now suppose we use a strategy suggested by de Boor [12] and Pereyra and

Sewell [37] in other contexts: arrange our spatial mesh so that it "approximately

cquidistributed" the hybrid local truncation error at time t = t -',

i = 1,2 s; compute forward in time until the equidistribution condition is

"nearly violated" at time t = t'. and then approximately equidistribute again.

(The hybrid truncation error is a suitable blending of the interior, interface and

boundary truncation errors.) In practice, of course, it is more work to discover

whether the condition is "nearly violated" than it is to simply approximately

equidistribute again. That is why we choose our "equidistribution" (mesh adjust-

ment) times a priori. A somewhat similar strategy has been used by Gannon

[16] for parabolic problems with finite elements in two space dimensions.

We should emphasize that we do not approximately equidistribute in prac-

tice, as it would be too expensive. Our recursive refinements achieve a primitive

form of approximate equidistribution at much less cost.

Using our proposition and results of Pereyra and Sewell we can then show

(generalizing what Oliger [33] did for the Cauchy problem) that, loosely speak-

39

ing, using our mesh refinement algorithm multiplies the constant KT by the fac-

tor

(b -a)

Here

K = V1N(CA)
Ph=l

is an upper bound on the ratio maxjhj/minjh j of spatial step sizes in our

refined mesh; A is, loosely speaking, the ratio of the length of the spatial

region that needs refinement (has high truncation error) to the length of the

whole spatial region b - a; p is the order of the interior approximation and the

global error; and q and r are the stencil sizes given in (2.11). When the solution

has rapid variations only in a small part of the (spatial) region, then the local

truncation error is small over most of the region, and A,,, is therefore small.

Thus our algorithm can use fewer mesh points in regions where the local trunca-

tion error is small (compared to using the same difference scheme on a uniform

mesh which achieves the same level of accuracy) and this produces significant

economies, as shown in Section 8.4.

6. Data Structures. In this section we discuss the data structures used in

our mesh refinement algorithm. The data structure has two parts: a four-way

linked tree to show the relationships between refinements, and sequentially allo-

cated deques for storing solution values of refinements. We will describe the

deques first.

6.1. Deques. One of the most important operations on a refinement is to

"move" it left or right to follow a wave. An efficient way to "move" a refinement

right (without actually moving any grid points) is to add grid points to the right

and delete them from the left. This leads us to store the solution values for a

40

refinement in a data structure called a "deque", or double-ended queue [25]. A

deque has the property that items are added to or deleted from its ends, but are

never inserted in or deleted from the middle.

For simplicity, we first consider a scalar equation. A natural way to store a

collection of deques is sequentially, as shown in Fig. 4. Here we see a region with

two refinements, and one of the refinements itself contains a refinement. The

solution values for the coarsest mesh occupy a fixed region at the lowest end bf

a vector which we will call v. The solution values for refinements occupy con-

tiguous sections of the remaining available memory, with variable-width gaps of

free space separating them. The gaps allow us to expand or contract

refinements (to a limited degree) without moving the solution values. The solu-

tion values corresponding to refinements are ordered as follows.

The coarse mesh is labelled refinement 1. It is followed in v by the "second

level" refinements (labelled 2 and 3 in Fig. 4), which arc ordered in v in the

same order as the refinements are encountered in proceeding from lef t to right

in the computational region. Following these are the "third level" refinements

(as is refinement 4 in Fig. 4), again in the same order as they occur in a left-to-

right scan of the computational region. and ignoring the positions of any coarser

(second level) refinements encountered in the computational region. Then

would appear all fourth level refinements, and so forth. This scheme duplicates

certain solution values in the vector v, namely the ones which correspond to

mesh points which lie on different level refinements. However, doing this makes

the program much simpler.

For an n x n system of equations, we replace the solution value vector v by

a matrix with ni rows. Each row has the same arrangement of solution values

separated by gaps, as illustrated in Fig. 4. For simplicity, in the rest of this sec-

tion we shall again refer to v as a vector.

41

B.2. The Tree. Next we will describe the (four-way linked) tree of records

which shows the relationships between refinements. Trees are natural here,

since we use recursive refinements, and are used in most adaptive solvers for

elliptic equations. There is a one-to-one correspondence between nodes

(records) of the tree and refinements, with the root corresponding to the coar-

sest mesh. In the following, we will identify a refinement with its node (record),

and use the term "refinement" to mean "the node corresponding to a

refinement". We will sometimes call the coarsest mesh a "refinement" for uni-

formity.

The root of the tree has level 1, its immediate successors are at level 2,

their successors have level 3, and so forth. Each node contains all the informa-

tion about a refinement, except its solution values. We will now describe this

information. The indices base and top indicate where in the vector v the solu-

tion values for a refinement are located. This is shown in Fig. 4 for the fourth

(level 3) refinement, but omitted for the other refinements to avoid clutter. Also

shown is a pointer coarse to the parent of each refinement. Furthermore, we

need pointers to all refinements ("children") of a refinement. We can avoid using

a variable number of pointer fields for this by using the usual device. We use one

pointer to the leftmost descendant (called fins in Figure 6. 1) and then chain

together all immediate descendants (children) using the "right" pointers, called

rtink in the figure. A refinement other than the root also needs two indices to

denote its endpoints within its parent, that is, which part of its parent it refines.

These are not shown in the figure.

Since we will often add or delete nodes in an unpredictable order, we imple-

mented the tree as a linked list. So far our records form a triply linked tree,

exactly as in Knuth (28, p.352]. However, additional links are needed.

42

The solution is advanced in time, and the error is estimated a level at a

time. Because we already have the rLlik pointers, we can chain together all

refinements on the sanme level (not just those with a common parent) using

rlink. Then we introduce a vector of pointers pointing to the leftmost

refinement on each level. (These are shown in Fig. 4.) This is related to the

leveBl-order represen~tation of a tree [28, p.350].

The last operation needed on our data structure is a repacking of the v vec-

tor, to be discussed shortly. This requires us to sweep through v in both direc-

tions. Thus we also require our rlink pointers to point from the rightmost

refinement (node) on level I to the leftmost refinement on level I + 1. To enable a

leftward sweep, we introduce "left" pointers Ulink, which are inverse to the rlivk

pointers. That is, if node p has right pointer rlink pointing to node q, then q has

left pointer IlinkJ pointing to p.

The final result is a four-way linkcd tree: a triply linked tree with the addi-

tional property that all the nodes are linked together, in level order, in a doubly

linked list. Our tree uses an inconsequential amount of memory, compared to

the memory in v devoted to solution values.

We now examne how the operations on refinements are effected using this

data structure. Advancing the difference approximation (in time) or estimating

the error can be done a level at a time, using the rlinki pointers and the leftmost

pointers on each level. Here we also use the "ancestor" or coarse pointers to

copy solution values from finer meshes to coarser meshes for points z which hie

on more than one refinement.

Similarly, we adjust the refinements level by level, starting with the highest

(finest) level. The mesh adjustment operations can be effected using four ele-

mentary operations, which are natural for a deque. They are shorten left, shor-

ten right, extend left, and extend right. Shortening either end of a refinement is

43

a trivial operation, accomplished by moving a base or top index. Deleting a

refinement is the same, but also involves removing a record from the tree and

reclaiming its storage. If there is enough space available, extending either end

of a refinement involves changing an index, copying solution values from the

parent refinement, and filling in new solution values using linear or quadratic

interpolation in space. Creation is the same, plus the operation of inserting a

new node in the tree. Separation of a refinement into two refinements involves

changing indices and inserting a new node. Finally, merging two refinements is

simplified because we insisted on the left-to-right ordering of refinements in the

vector v. We move left the solution values of the right refinement, if necessary,

then extend the left refinement to the right, change some indices, and delete

the right node. Complicating the last two operations is the need to adjust

pointers to descendant refinements.

6.3. Memory Repacking. A problem occurs during an "extend" operation

when there is insufficient expansion room between refinements. This calls for a

repacking of memory, and an algorithm for this is given by Knuth [28, pp.245-6]

for the case of a sequence of stacks (rather than deques). We will therefore

describe the modifications to this algorithm for our data structure.

When a refinement runs out of room in the v vector, moving only the adja-

cent refinement will probably cause another repacking to occur soon, so it is

better to reallocate all available memory when a refinement runs out of room.

Knuth breaks this into two parts: Algorithm G, which decides how to allocate the

free memory to the refinements, and Algorithm R, which actually moves the

refinements into the positions dictated by Algorithm G. It is Algorithm R which

requires the forward and backward sweep of the v vector in order to avoid

overwriting any information.

M6~

44

We used Algorithm R unchanged and modified Algorithm G as follows.

Knuth's main idea is to share ten percent of the free memory equally among the

refinements, and to divide the other ninety percent proportionate to the amount

of increase in refinement size since the previous repacking. This idea is not use-

ful in our case. For a traveling wave, all refinements stay about the same size,

but "move'. However, we can modify this rule by awarding the ninety percent of

available memory proportionate to the amount each refinement has moved

since the last repacking. We discover whether a refinement has moved primarily

left or right (in memory) since the last repacking, and award its share of the

ninety percent to its left or right, respectively.

This change to Knuth's algorithm greatly reduces the number of repackings

compared to more naive allocation methods. Since the coarse mesh doesn't

move it receives none of the ninety percent allocation Furthermore, the higher

level refinements move further (measured in number of mesh points, not physi-

cal distance) than the lower level ones, so they are awarded more free space by

this scheme.

Our storage scheme for solution values cannot be generalized to more

space dimensions, because refinements no longer have only two "ends". In more

dimensions it is also unwise to merge adjacent refinements, even if they are on

the same level. But our scheme avoids more complicated storage allocation

algorithms [2).

7. Choice of Programming Language. We will now explain and justify our

choice of implementation method for the programs used in our computations.

Possible alternatives include Algol W, PL/I, Algol 60, Algol 68. Pascal, For-

tran, and Fortran with preprocessor. The arguments against the first four are

lack of availability of a compiler and/or lack of portability. Raw Fortran (even

Fortran 77) is cumbersome to use because of the lack of control and data

45

structures, both of which are crucial for our task. However, most numerical

software is written in Fortran, and if one uses another language, there must be

an interface to Fortran. For reasons given in Kernighan [27], we did not use Pas-

cal, despite its excellent data structuring facilities.

We then examined preprocessors. We rejected Feldman's [15] EFL, Grosse's

[20] language T, and Stein's [45] language for portability reasons, even though

their respective authors have devoted considerable thought to devising

appropriate language constructs for numerical algorithms. We examined two

portable Fortran preprocessors: Kernighan's [26] Ratfor and Cook and Shustek's

[10] Mortran. Although the former is more widely used, we chose the latter

because it is far more general and flexible. (Engquist and Smedsaas [14] have

also used a macro processor in their work. Gropp [19] has developed a language

for mesh refinement algorithms.)

The term Mortran, like Fortran, has several meanings. It can mean a struc-

tured source language, a translator for that language, or a macro-processor.

The structured language is implemented as a set of macros which are used by

the Mortran macro processor to translate the language into Fortran. The result-

ing Fortran program is then run like any other Fortran program.

In contrast to most other Fortran preprocessors, the Mortran preprocessor

is written in a portable subset of ANSI (standard) Fortran. Hence the Mortran

preprocessor, and, more importantly, Mortran source programs, are portable

between different machines. (We ran our programs on an IBM 370/168, a CDC

7600, and a DEC VAX with minimal conversion problems.) Furthermore, Mortran

source and Fortran source can be intermixed, so the Mortran user has access to

all existing Fortran software.

We felt that there was one property of Mortran which made it especially

desirable for this project: extensibility. This means that new data structures,

46

operations on data structures, and control structures can be added to the

language (at rather small cost in implementation time) by adding additional

macros to the language. To implement the linked list for our tour-way linked

tree, we needed records and pointers, and Mortran allows us to create these new

data types and to define operations (such as following pointers) on these data

types. We modified the Mortran macros for records and pointers given in Zahn

[49]. and used Pascal-like syntax [25].

Of course, many of the restrictions of Fortran remain. Among these are

lack of dynamnic storage allocation, arrays with arbitrary subscripts, and recur-

sion. Except for recursion, these are not serious. We needed recursion when

advancing the solution and when plotting it; for the latter we needed to search

the tree in preorder to produce solution values ordered with increasing z. Doing

without recursion made for more obscure code.

For most control constructs, Mortran produces Fortran code that is as

efficient as possible without using global flow analysis. For one type of loop (the

for loop) we rewrote the macros to generate more efficient Fortran [5].

A criticism often levelled at macro preprocessors is that they produce

error diagnostics in terms of Fortran instead of the source language. Zahn [49]

shows how to write additional macros to produce reasonable source-level diag-

nostics for the record and pointer constructs. These macros also insure that a

pointer points only to a record of the appropriate type.

In [5] we gave a complete program listing of our mesh refinement algorithm

applied to problem P2 in Section 8.

8. Computational Results. In this section we answer the following questions

about our method:

47

1. Does our method "follow" or "track" steep gradients? Is it fooled by back-

ground effects?

2. Is the algorithm sufficiently general to allow refinements to be created, des-

troyed. merged. separated, moved, and to abut boundaries?

3. Is the algorithm sensitive to the direction of characteristics, or dependent

on knowing that certain boundary conditions are inflow or outflow?

4. Will the method handle nonlinear problems?

5. How well will the method follow disc ontinuities or shocks?

6. Are recursive refinements worthwhile?

7. How should one choose the refinement ratios N and M?

B. How efficient is the method, both in execution time and memory?

9. How does the global error behave as h - 0?

10. How do the two methods of interior local error estimation of Section 3 com-

pare in accuracy and efficiency?

11 How do different boundary approximations and methods of estimating their

error affect the solution?

12. How often should one monitor the local truncation error (and adjust

refinements)?

8. 1 Model Problems. Since we believe it is impossible to answer these ques-

tions analytically, we resort to numerical experiments on model problems.

Problem P1, the first-order wave equation, was introduced in Section 2.4. We

now introduce two additional problems.

P2 is the second order wave equation, written as a 2 x 2 first order system.

with "open" boundary conditions (i.e., the boundaries are "transparent" to tray-

cling waves). As exact solution wc usc two countcr-streaming Gaussian pulses,

48

superimposed on a sinusoidal background. The differential equation is

ut = Au, a!S z ! b, O< t, <c, (PI)

where

with initial conditions

uI(Z, (-T) + g (Z)

u2 (z,0) = -() + J ()j

and open boundary conditions

. u1 (a,t) = u 2(a,t) + 2f(a -ct),

ul(b,t) = -u 2(b,t) + 2g(b + ct)

We choose a = 0, b = 4, c = 1. The exact solution is

Su 1 (,t) = f(z -ct) +g(z + ct),

u 2 (z,t) = -f(Z - ct) + g(Z + Ct).

To produce our interacting pulses. we take f (z) exactly as in P1, and

g (z) = -exp(-(z -4.5)2).

, where a = 200. Each pulse occupies about 8 percent of the region a ! z ! b.

The difference approximation in the interior is again Lax-Wendroff

vi (f.k) = (I + Ak1D + W42kDD'..)v (f

(omitting superscripts I on v), with coarse/fIne approximation

vj,(t+kj) = (I +AkjD6-I + XA~kj2D'+-'D_-I)vj-I(f)

" at interfaces, the obvious initial condition, and obvious boundary approxima-

tions for vI. For v 2 , we need extra boundary conditions at both: = a and z =b

0 .

49

and we use either

(a) upwind/downwind differencing:

j2(t +kj) = (I + ckgD,)vj2(t) atz = a,

v3 2(t+kj) = (I + ck D-)vj 2 (t) atz = b.

where V2(t) denotes an approximation to u 2(z,t) at z = a + jht on an L-th level

refinement; or

(b) frst-order extrapolation

(D'+)2V, 2(t +k) = 0 atz = a,

(DL)2j 2(t+kL) = 0 atz = b.

(The first 2 in each line is an exponent, not a superscript.) Gustafsson, Kreiss

and Sundstr6m [22] showed that both approximations (a) and (b) are stable with

Lax-Wendroff, according to their stability definition.

Our second problem is the Riemann shock tube problem for a compressible,

inviscid gas [43]. The compressible Euler equations, in conservation form, are

Ut + F(U). 0= 0!6 X !G1, t t 0,

where

U= m, and F(U)= (m 2 /p)+p

Here p, m, and e are the mass, momentum, and energy, respectively, per unit

length, andp is the pressure. Let u = m/p be the velocity. If the gas is polytro-

pic with ratio of specific heats -/, we can express the energy as e = p(E +)z 2,

where the internal energy per unit mass v = p/(7- 1)p. We can also write

p = (- 1)(e -)Jm 2/p).

50

Initially we will have two gases at rest, but at different pressures and densi-

ties, separated by a membrane. At time t = 0 the membrane is instantaneously

removed. Following Sod [43], let us define the left state S, = (1.0, 0., 2 .5)T and

the rigkI state St = (. 125, 0., .25) T. Then, initially, U (z, 0) = S, for 0 e. z < 0.5,

and U(z, 0) = Sr for 0.5:9 z ! 1. At the left boundary U(0, t) = SI, and at the

right boundary U (1, t) = St, both for t > 0, but before reflections off the wall.

(One should actually specify only one of p, m, or e at each boundary, as can be

seen by considering characteristics and Riemann invariants. However, our pro-

cedure is equivalent before reflections off boundaries, since the solutions are

constant near the walls.) For fixed t > 0, before reflections off the walls, the

exact solution is a function of (z - 0.5)/ t only. Proceeding from left to right

across the region, the exact solution is the constant state SI, followed by a rare-

faction, followed by a constant state. To the right of this is a contact discon-

tinuity, followed by another constant state, then a shock, concluded by the con-

stant state Sr. Sod shows how to compute the exact solution at any time by

solving a 3 by 3 system of nonlinear equations.

We approximated this using the usual two-step Lax-Wendroff method, as

given in Richtmyer and Morton [41, p.302]. We added dissipation by subtracting

from the flux F-14 occurring in the two-step Lax Wendroff scheme the quantity

vIun+, - u1 (U n I - Up), with v = 1. That is, the dissipation is based entirely on

the values of U and u at the old time level. We chose this method rather than

Sod's because it is easier to implement. At the initial jump discontinuity we

took average values for the density and energy. Naturally we modified all this by

adding subscripts and superscripts I (for level of refinement) in the appropriate

places. Since our previous calculations used time-dependent boundary condi-

tions, we use constant ones here. The solution was calculated up to and includ-

ing time t = 0. 15. (Of course, at coarse/fine interfaces, we made modifications

as in P1 and P2.)

51

8.2 Qualitative Results. Figs. 5(a) through 5(o) show our algorithm applied

to the second-order wave equation with counter-streaming pulses. We used a

coarse mesh of 81 points, with refinement ratios N = M = 3 and maximum

number of refinement levels = 5. (Only four levels were actually used in the cal-

culation.) The local error tolerance was 0.01, X, = 0.8, and the wave speed c = 1.

We used the Richardson method to estimate the error.

Each graph plots the approximate solution component vt(x,t), i = 1. 2.

versus x (at a fixed time) as a solid line, together with a separate calculation

done with no refinement (maximum refinement level = 1), shown as a dotted

line. We usually show the first component vl(x,t) versus x, but in a few

instances we show V2(zt versus x. Since the maximum error in this calcula-

tion was less than 2 percent, the refined solution may be taken as the exact

solution on the graph.

In Fig. 5(a) the pulses have not yet entered the region an~d we see only the

sinusoidal background. (This graph was made at t = 0.04 rather than t = 0 since

we used the exact solution at t = 0.04 to compare with another method not

given here. We started at t = 0 in problem P3.) In Fig. 5(b) both pulses have

enmtered and refinements on levels 2, 3 and 4 have been created at both boun-

daries. (The small numbers at the top are the level numbers of the ends of

refinements.) All the refinements abut the boundaries. In Fig. 5(c) both pulses

have left the boundaries and are moving towards each other. The refinements

follow.

In Fig. 5(d) the second-level refinements are about to merge, and in Fig.

5(e) they have merged; however, the third and fourth level refinements have not

yet merged. Note that the unrefined solution ' s become a very poor approxi-

mation to the pulses--the unrefined peak and trough have only half the size they

should. Note also that behind the pulses, the unrefined solution has a large

52

undershoot. In Fig. 5(f) the third level refinements have merged. Fig. 5(g)

shows the second component of the solution at the same time. In Fig. 5(h) the

fourth level refinements have merged. Fig. 5(i) shows the second component of

the solution at the same time.

In Fig. 5(j) the pulses have crossed, and the third and fourth level

refinements have separated. (Note that the pulses cross, but the refinements do

not.) In Fig. 5(k) the second level refinements have separated as well. Note the

degradation in the unrefined solution at this point. Fig. 5(l) shows the pulses

approaching the boundaries. Now the unrefined solution has phase errors as

well as amplitude errors. In Fig. 5(m) the pulses are leaving the region, and -tie

refinements again abut the boundary. Fig. 5(n) shows that the fourth level

refinements have been deleted. Finally, Fig. 5(o) shows that all refinements have

been deleted. Only the sinusoidal background remains.

This problem answers questions 1 to 3. It shows the interactions of up to

seven refil~ements. Since both boundaries act as inflow boundaries at some

times and as outflow boundaries later, our method does not depend on the direc-

tion of characteristics. These calculations also show that the method is not

fooled by background oscillations, and that the refinements "follow" and resolve

steep gradients. The method clearly adapts to time-dependent boundary condi-

tions.

Figs. 6(a) to 6(d) show the algorithm applied to the Riemann shock tube

problem (P3). Shown at time t = 0. 15 are the density, velocity, pressure and

internal energy vs. x. The dotted line shows the unrefined calculation. We used

101 points on the coarsest mesh, with refinement ratios N = M = 4, and max-

imum number of levels = 3. The local error tolerance was 0.01. and the max-

imum wave speed input to the program was max (Jul + c) :u 2.2. We took

X= 15/ 37 .405405, since X = 5/ 11 Fa .45454 is necessary for CFL stability in

53

the absence of dissipation. The maximum number of refinment levels was 3. We

used the Richardson method. (In contrast to the smooth solution case, the local

truncation error estimate around a discontinuity does not decrease on finer

meshes; hence our method will always use the maximum number of levels in this

case.) The purpose of this calculation is to see if our method can handle a non-

linear problem, and if it can "follow" and resolve shocks, contact discontinuities,

and rarefactions, for which it was not designed. These results are directly com-

parable with those of Sod [43].

The shock, rarefaction and sonic point (at the right side of the rarefaction)

are very well resolved. The contact discontinuity has wiggles, since no dissipa-

tion was added around it. The maximum error occurs here also. In this problem

most of the error comes from the initial step function, and our method

"instantly" refines around the initial step. The method has placed the third level

refinements only where needed - around the shock, contact, and the edges of

the rarefaction.

This problem shows that the Richardson error estimation method performs

correctly under far more general circumstances than the hypotheses of

Theorem 1. We need not assume constant coefficients, linearity, or a Cauchy

problem. This method performs well even when the global error has a lower

order than the local error, and when the solution is not continuous. (It is well-

known E31] that the global error is not second order in those parts of the region

reachable by characteristics emanating from the shock.) In fact, for smooth

solutions this method yields estimates with approximately 10 to 15 percent

error. (One of the methods examined in F.5] gave 800 to 1000 percent errors!)

Of course, we cannot yet seriously suggest this as a method for computing

shocks, since we have not considered matters such as entropy, monotonicity, or

conservation. (But see [2] for a discussion of conservation.) This problem is too

.

54

simple a model for problems with discontinuous solutions, since there are no

collisions of shocks and/or rarefactions. For some problems (e.g., chemical

kinetics) it is important to accurately resolve shocks.- For others (e.g., gas

dynamics) our method (using its present error estimation) may expend too

much effort resolving shocks. In the latter case a method such as that of Wood-

ward and Colella [48] may be more appropriate. On,, could also construct a

hybrid scheme, by applying a difference method designed for shocks only on

high level refinements containing the shock(s), and using a more inexpensive

difference method on the rest of the refinements.

We now proceed to more quantitative questions.

8.3 Choosing Refinement Ratios and Maimum Level. In [5] we studied the

questions of how to choose the refinement ratios N and M and whether to use

recursive refinements with computations on model problem P1. We found that:

(a) It is necessary to use recursive refinements for efficiency.

(b) If we fix the coarse mesh size and the local error tolerance, and let the

maximum number of refinement levels increase, then, for smooth solutions, the

number of refinement levels used first increases and then stays constant. That

is, the method only uses as many levels as are necessary. For smooth solutions,

one should therefore set the maximum refinement level at some large number.

(In many cases, the method uses three levels.)

(c) One can choose the refinement ratios N and M to be between 4 and 6 for

near optimal efficiency. Nothing is gained by choosing different refinement

ratios for different l, or by choosing NOM.

We next come to the most important result of this paper.

8.4 Efficiency of the Method. In Section 8.2 we showed that our method was

able to resolve steep gr. dients, and even shocks, in the solution. We showed this

55

by comparing the solution obtained by our method with one obtained on a uni-

form coarse mesh. This clearly showed the qualitative superiority of our

"refined' solution over the "unrefined" one.

However, the "unrefined" solution cost far less to compute than the

"refined" one. For example, it cost 1.17 seconds to compute a "refined" solution

of Problem P1 up to time t = 3.6 (without graphic output, etc.) vs. 0.04 seconds

to compute the "unrefined" solution up to the same time. This is a factor of 29

more expensive. But the unrefined solution was worthless.

Thus, to study the efficiency of our method, we need to compare the com-

puting time taken by our method with the computing time taken to produce

(approximately) the same error on a uniform (fine) mesh. As a by-product, we

will also be able to compare the memory taken in the two approaches.

Our method is simple. Instead of comparing a "refined" solution E with a

solution computed on only its coarsest mesh, we compare E with a solution com-

puted on a uniform fine mesh whose spacing is the same as the spacing of the

E's finest mesh. If these two produce approximately the same error, then we

have a valid comparison.

Because this is probably the most important result in this paper, we made

this study on all three of our model problems. The result is approximately the

same for all.

Table 1 shows the results. The errors are at t = 3.6 for P1 and P2, and at

t = 0. 15 for P3. For P1 and P2, this is the time just before the pulse leaves the

spatial interval. (We will measure the error at these times in the rest of this sec-

tion.) The local error tolerance was 0.001 for P1 and P2 and 0.01 for P3. We used

Richardson extrapolation. The maximum error is the maximum over all com-

ponents of the (global) error n-vector, land over all grid points existing at a

given Lime. The 12(z) norm of v was given in Section 4. Here we alLer Ihe

77 .7 . . .

56

definition by taking the 12 norm of each component of the solution, and then tak-

ing the maximum of the n results. The 12(z) norm of the error is analogous. We

used upwind/downwind boundary conditions for P1 and P2 (see Section 8.1).

K In our tables, a maximum mesh level of 1 signifies that only the coarse

mesh is present (no refinement), 2 signifies one additional level of refinement.

and so forth. The times reported are CPU seconds on a CDC 7600. (Since this

* machine runs only in batch, these times are highly reproducible between runs,

and we did not need to take average times.) The storage used is for solution

values only, and is the maximum storage used at the (refinement) level listed.

per solution component, for all times. Since the coarse mesh is static, it always

uses 81 or 101 locations. The total listed is the sum over all levels.

We see that in terms of computer time our method is 3 to 5.5 times as

efficient as using a uniform fine mesh which produces the same error. In terms

of memory, a factor of 1.7 to 2.2 is gained. At first it might seem surprising that

our method could be more efficient, since it requires much greater overhead (to

estimate the error and adjust refinements) than the uniform mesh method. This

is compensated for, however, by being able to take large time steps in unrefined

regions. Most of the computing time is spent in advancing the solution on the

finest refinements. The error estimation and mesh manipulations are almost

tree. That is why it is so important to refine only where necessary.

In general, of course, the specific efficiency factor depends primarily on the

fraction of the region needing refinement, and other factors such as the local

error tolerance, when (for which t) we are doing the comparison, the wave

speed, and so forth.

These results show why we need to create, delete, merge, and separate

refinements. If we did not allow merging and separating, then in P2, we would

have had to refine the whole region when the pulses were entering or leaving the

5?

region and this would degrade the efficiency. Similarly, in P3. we would have had

to use a single refinement encompassing all the non-constant features of the

solution.

Our mesh refinement algorithm reduces the (maximum) number of mesh

points needed to achieve a given accuracy, and this naturally reduces the

amount of work, but does the amount of effort per mesh point decrease? Table 1

also gives this figure. obtained by dividing the computer time by the maximum

number of mesh points used. It is(clear that in all cases the work per mesh

point is decreased by a factor of approximately two (the notation n-in means

n-l0 m).

It might be argued that we obtained our results only by adjusting or tuning

the parameters N, M. To refute this charge, we have shown several different

values of N and M. This shows that although we cannot easily determine the

optimal N, M. even suboptimnal choices still yield a significant savings in excu-

tion time.

8.5 Behavior as h - 0. For our mesh refinement algorithm we can study

two types of convergence. In all cases we let A = ki/hg = constant, independent

of L. Thus N and M are fixed. We shall assume the exact solution is sufficiently

smooth.

(a) We can keep the local error tolerance 6 and the maximum refinement

level A fixed, and let the largest spatial step h a h, approach zero. If we take a

sufficiently large value for A. then the algorithm will refine as much as it needs

to. Furthermore, (for smooth solutions) our method then has a property which

leads to simplified analysis-. For sitfficrientLjj smo.LL h 1, ou.r refine d mesh becomes

a uniform mesh. This type of convergence is not desirable, since the advan-

tages of refinement are ultimately lost.

58

Mb In the second method we let h, - 0 and choose 6 as a function of hl, so

that 6 - 0 also. (Alternatively, we could let & - 0 and choose h, as a function of

6.) If one knows the order of the global error, one could choose 6 = C(h1)P for

some constant C. This is certainly the theoretically most appealing method. If

we use this method, then the grid does not approach a uniform coarse grid as

h,- 0. Rather, the ratio of the width of any refinement to the width of its

parent should approach a constant as h, - 0. However, for checking the asymp-

totic behavior of the program we shall first use method (a). since it does not beg

the question by assuming the behavior of the global error.

We first keep the maximum number of refinement levels constant, and less

than necessary (for the method to refine as much as possible), and study the

first type of convergence. Table 2 shows these results on Pi using A, = 0.8,

N = M = 4, three-level Richardson extrapolation, and local error tolerance =

0.001. For the smaller values of h, the 0(h2) behavior of the errors (both max-

imum and 12) is apparent.

Next we do the same test, but choose the maximum number of levels large

enough so that the method refines as much as possible. The maximum level is 5

here. The convergence is 0(h2) for the maximum error with the coarse mesh

size going from No = 80 to 160. But the grid is approaching a uniform mesh as

h - 0 and this slows down the convergence. As h - 0 the number of levels used

approaches 1.

Using method (b), we let h - 0 and let 6 = 0(h2). Here we see the conver-

gence is faster, and the maximum error is finally 0(h 2) . The 12 error does not

behave as well.

8.6 Estimating the Local Truncation Error in the Interior. In L'5] we com-

pared the Richardson method and differences for estimating the error in the

interior of refinements on problem P1. We found that there was very little

59

difference in efficiency between these methods. The use of differences was

slightly more efficient. But the greater convenience of Richardson for interior

approximations far outweighs any small efficiency differences.

8.7 Estimating the Local Truncation Error at Boundaries. In this section we

will vary our boundary approximation and our method of error estimation at the

boundary, while using the Richardson method in the interior on problem P2.

We will use -upwind/ downwind differencing and first-order extrapolation.

For the former we will estimate the error by using both the modified Richardson

method (Section 3.3) and differences. For extrapolation we can only use

differences. The results are shown in Table 3. In all cases, the number of inter-

vals on the coarsest mesh is 80, the maximum number of refinement levels is 5,

and the refinement ratios N = M = 4. In all cases the fifth refinement level was

not used. U/D signifies upwind/downwind differencing, and Rich. signifies the

modified Richardson method. The memory occupied by solution values is the

maximum total over all refinement levels for one component of the solution. All

other parameters not shown are the same as in the computation for problem P2

in Table 1.

Clearly, the different boundary approximations and error estimation

methods produce approximately the same results. This supports our claim that

our method of adaptively handling boundaries is quite general.

83.8 How Often Should the Local Truncation Error Be Checked?. In Section

2 we used subsequences to describe the times at which we estimate the local

truncation error (and possibly alter refinements). In this section we shall show

that for Problem Pi it is unwise to monitor the local truncation error more often

than every coarse time step.

60

Table 4 shows the results of these computations for Problem P1. All param-

eters not mentioned are the same as in the computations for Table 1. The

meaning of (a) under "tolerance frequency" in Table 4 is how many coarse time

steps occur between checks of the local error. The column (b) has two different

meanings, depending on column (a). If column (a) is 1 then we check the trun-

cation error at any time a refinement whose level is less than or equal to (b) is

about to be advanced. Thus, in these cases we check more often then every

coarse time step. Table 4 shows that this is very costly and produces no benefits

whatever.

If (a) in Table 4 is greater than one, a one in column (b) signifies that we

check all refinements every (a) coarse time steps. If column (a) is greater than

one and (b) is greater than one, we check refinements with levels greater than

or equal to (b) every coarse time step, and all others every (a) coarse time

steps. Of course, in all cases in this table, the buffers mentioned in Section 2.6

have to be modified, in a way analogous to the argument given there.

Our results for these cases show very little difference from checking every

coarse time step, until the checking frequency becomes too seldom (as in case

(a) = 6. (b) = 1). Then the accuracy starts to deteriorate, because a pulse may

enter the boundary before it is enclosed in refinement(s). (The algorithm could

easily be modified to check the boundaries at every coarse time step, but we did

not do this.)

We conclude that for this problem we may as well check the local error

every coarse time step, although this may depend on factors such as the spacing

of the coarse mesh, the wave speed, and the presence of forcing functions

(terms IcF in (2.1)). Also, the results may be radically different in more than

one space dimension [2].

61

8.9 Unear vs. Quadratic Interpolation. An implementation detail we con-

sidered is whether to use linear or quadratic interpolation when a level L

refinement moves into a region formerly occupied only by a level L-1

refinement. In [5] we found that there is practically no difference. We used qua-

U.-dratic interpolation elsewhere in this section.

-* Acknowledgments. I am grateful to my research advisor, Professor Joseph

Oliger, for suggesting the topic of this thesis, and for his encouragement and

advice during its preparation. I also wish to thank Gene Golub, John Herriot,

Joseph Steger, George Homsy. and Paul Concus for encouragement and support.

Also my thanks to Marsha Berger, Tony Chan, Phil Colella, and Gerald Hedstrom

for suggestions and technical discussions.

I acknowledge computing facilities used: at the Stanford Linear Accelerator

Center. operated for the U. S. Department of Energy by Stanford University; and

at the Computer Center of the Lawrence Berkeley Laboratory, operated for the

Department of Energy by the University of California.

Finally, I gratefully acknowledge financial support provided by Stanford

University as a teaching assistant, by the Office of Naval Research under con-

tract N00014-75-C-1132, and by the Director, Office of Energy Research, Office of

Basic Energy Sciences, Engineering, Mathematical and Geosciences Division of

the U.S. Department of Energy under contract DE-AC03-76SF00098.

4.

62

REFERENCES

[1] 1. Babushka, and W. C. Rheinboldt, Error Estimates for Adaptive Finite Me-

ment Computations, SIAM J. Nurner. Anal., 15 (1978), pp. 736-754.

[2] M. Berger, Adaptive Mesh Refinement for Htperbolic Partial Differential

Equations, Ph.D. thesis, Stanford University Computer Science Report

STAN-CS-82-924, August, 1982.

[3] M. Berger, W. Gropp, and J. Oliger, Mesh Generation for 7ime-Dependent

Problems: Criteria and Methods, Proc. Workshop on Numerical Grid Genera-

tion Techniques for Partial Differential Equations, NASA Conference Publica-

tion 2166, October, 1981.

[4] M. Berger, W. Gropp, and J. Oliger, Stability Analysis, to appear.

[5] J. Bolstad, An Adaptive Finite Difference Method for Hyperbolic Systems in

One Space Dimension, Ph.D. thesis, Lawrence Berkeley Laboratory LBL-

13257 and Stanford University Computer Science Department STAN-CS-82-

899, June, 1982.

[6] J. U. Brackbill and J. Saltzman, Adaptive Zoning for Singular Problems in

Two Dimensions, J. Comp. Phys., 46 (1982), pp. 342-368.

[7] G. Browning, H. 0. Kreiss, and J. Oliger, Mesh Reflnement, Math. Comp., 27

(1973), pp. 29-39.

[6] P. Budnik and J. Oliger, Algorithms and Architecture, High Speed Computer

and Algorithm Organization, D. J. Kuck, D. H. Lawrie, and A. H. Sameh, eds.,

Academic Press, New York, 1977, pp. 355-370.

[9) M. Ciment, Stable Difference Schemes with Uneven Mesh Spacings, Math.

Comp., 25 (1971), pp. 219-227.

[10] A. J. Cook and L. J. Shustek, A User's Guide to MORTRAN2, Computation

Research Group, Stanford Linear Accelerator Center, Stanford, CA, 1975.

. .. _. . . -... ." -.. --..... . - -.-. : ' -. . • - ":,. . :.--.--. -.

63

[11] S. Davis and J. Flaherty, An Adaptive Finite Element Method for Initial

Bounda rVaue Problems for Partial Differential Equations, SIAM J. Sci.

Stat. Comput., 3 (1982), pp. 6-27.

[12] C. de Boor, Good Approximation by Splines with Variable Knots. . Confer-

ence on the Numerical Solution of Differential Equations, G. Watson, ed.,

Lccture Notes in Mathematics 363. Springer Verlag, New York, 1974, pp. 12-

20.

[13] H. A. Dwyer, R. J. Kee, and B. R. Sanders, Adaptive Grid Methodfor Problems

in FZuid Mechanics and Heat Transfer, AIAA J., 18 (1980), pp. 1205-1212.

(14] B. Engquist and T. Smedsaas, Automatic Computer Code Generation for

Hyperbolic and Parabolic lifferentila Equations, SIAM J. Sci. Stat. Comput.,

1 (1980), pp. 249-259.

[15] S. Feldman, The Programming Language EFL, Bell Laboratories Comp. Sci.

Tech. Rep. No. 78, 1979.

[16] D. Gannon, Self Adaptive Methods for Parabolic Partia Differential Equa-

tions, Dept. of Computer Science, Univ. of Illinois, 1980.

[17] R. J. Gelinas, S. K. Doss, and K. Miller, The Moving Finite Element Method:

Applications to General Partial Differential Equations with Multiple Large

Gradients, J. Comp. Phys., 40 (1981), pp. 202-249.

[18] W. D. Gropp, A Test of Moving Mesh Refinement for 2-D Hyperbolic Prob-

*.- lems, SIAM J. Sci. Stat. Comput., 1 (1980), pp. 191-197.

[19] W. D. Gropp, Preprocessor Language, to appear.

[20] E. Grosse, Software Restyling in Oraphics and Programming Languages,

Stanford Univ. Comp. Sci. Report STAN-CS-78-663, 1978.

[21] B. Gustafsson, 7he Convergence Rate for Difference Approzimations to

Mixed Initial Value Problems, MaLh Comp, 29 (1975), pp 396-406

i
•

.-- . .. ~ ~

64

[22] B. Gustafsson, H. 0. Kreiss, and A. Sundstrom, Stability Theory of Difference

Approximations for Mixed Initial Boundary Value Problems, II, Math.

Comp., 26 (1972), pp. 649-686.

[23] G. W. Hedstrom and G. H. Rodrigue, Adaptive-Grid Methods for Time-

Dependent Partial Differential Equations, Proceedings of the Conference on

Multigrid Methods, Cologne, Lecture Notes in Computer Science, Springer

Verlag, New York, 1981.

[24] S. S. Hu and W. E. Schiesser, An Adaptive Grid Method in the Numerical

Method of Lines, Advances in Computer Methods for Partial Differential

Equations IV, R. Vichnevetsky and R. S. Ste'pleman, eds., IMACS, New

Brunswick, NJ, 1981, pp. 305-311.

[25] K. Jensen and N. Wirth, Pascal User Manual and Report, 2nd ed., Springer

Verlag, New York, 1974.

[26) B. Kernighan, RATFOR - a Preprocessor for a Rational Fortran, Software -

Practice and Experience, 5 (1975), pp. 395-406.

[27] B. Kernighan, Why Pascal is Not My Favorite Programming Language, Com-

puting Science Technical Report No. 100, Bell Laboratories, 1981.

[28] D. E. Knuth, The Art of Computer Programming, vol. 1, 2nd ed., Addison-

Wesley, Reading, MA, 1973.

[29] H. 0. Kreiss and J. Oliger, Comparison of Accurate Methods for the Integra-

tion of Hyperbolic Equations, Tellus, XXIV (1972), pp. 199-215.

[30] D. C. Lam and R. B. Simpson, Modelling Coastal Effluent Transport Using a

Variable FAnite Difference Grid, Advances in Computer Methods for Partial

Differential Equations II, R. Vichnevetsky, ed., IMACS, New Brunswick, NJ,

1977, pp. 294-300.

65

[31] A. Majda and S. Osher, Propagation of Error into Regions of Smoothness for

Accurate Difference Approximations to Hyberbolic Equations, Comm. Pure

AppI. Math., 30 (1977), pp. 671-705.

[32] K. Miller and R. Miller, Moving Finite Elements. I, SIAM J. Numer. Anal., 18

(1981), pp. 1019-1032.

[33] J. Oliger, Approximate Methods for Atmospheric and Oceanographic CLrcula-

tion Problems, Proc. Third International Symposium on Computing Methods

in Applied Sciences and Engineering, R. Glowinski and J. Lions. ed., Lecture

Notes in Physics 91, Springer Verlag, New York, 1979, pp. 171-184.

-* ".[34] J. Oliger, Fourth Order Difference Methods for the Initial Bound y-Value

Problem for Hyberbolic Equations, Math. Comp., 28 (1974), pp. 15-25.

[35] J. Oliger, Hybrid Difference Methods for the Initial Boundary- alue Problem

for Hyperbolic Equations, Math. Comp., 30 (1976), pp. 724-738.

[36] J. Oliger, Constructing Stable Difference Methods on Piecewise Uniform

Grids, to appear.

[37] V. Pereyra and E. G. Sewell, Mesh Selection for Discrete Solution of Boun-

dary Problemas in Ordinary Differential Equations, Numer. Math., 23 (1975),

pp. 261-268.

[38] B. Pierson and P. Kutler, Optimal Nodal Point Distribution for Improved

Accuracy in Computational Fluid Dynamics, AIAA J., 18 (1980), pp. 49-54.

[39] M. M. Rai and D. A. Anderson, Application of Adaptive Grids to Fluid-Flow

Problems with Asymptotic Solutions, AIAA J., 20 (1982), pp. 496-502.

[40] W. C. Rheinboldt and C. Mesztenyi, On a Data Structure for Adaptive Finite

Element Mesh Refinements, ACM TOMS, 6 (1980), pp. 166-187.

[41] R. Richtmyer and K. W. Morton, Difference Methods for Initial Value Prob-

lems, 2nd. ed., Wiley, New York, 1967.

.

66

[42] L. M. Shampine and M. K. Gordon. Computer Solution of Ordinary

Differential Equations: the Initial Value Problem, Freeman, San Francisco,

1975.

[43] G. Sod, A Survey of Several filnite Differenre Methods for Systems of Non-

linear Hyperbolic Conservation Laws, J. Comp. Phys., 27 (1978). pp. 1-31.

[4-4] J. Steger and D. Chaussee, Generation of Body-Fitted Coordinates Using

Hyrperbolic Partial Differential Equations, SIAM J. Sci. Stat. Comput., 1

(1980). pp. 431-437.

[45] J. Stein, On the Usefulness of an Extensible Programming Language to Par-

tial Differential Equations, Advances in Computer Methods for Partial

Differential Equations I, R. Vichnevetsky, ed., IMACS, New Brunswick, NJ,

1977, pp. 150-154.

[46] H. Stetter, Global Error Estimation in Adams PC-Codes, ACM TOMS, 5 (1979),

pp. 415-430.

[47] A. B. White, On the Numerical Solution of Initial/Boundary-Value Problems

in One Space Dimension, SIAM J. Numer Anal., 19 (1982), pp. 683-697.

[48] P. Woodward and P. Colella, The Numerical Simulation of Two-Dimensional

Fluid Flow with Strong Shocks, to appear in J. Comp. Phys.

[49] C. T. Zahn, A User Manual for the MORTRAN2 Macro-Translator, Computa-

tion Research Group, Stanford Linear Accelerator Center, Stanford, CA,

1975.

. ,. . -. . ..--...- . -- -" "

- CX) -- " --4r) -N.C 0

LoO

C..

-- mo

- .

r4) NJ-

. 4- .4 04-mml m lm,, mm m m~ dmml m m ,m~ll m

__ __ _ __ __ - _ - =nk I+2k 2

ki t 12

t =nk1

XB L 822-171

i iciir, Coarszc/Eine il t1(rfa(9"

7 -I II I"

8

* xo

a: --

XB 2.6

t

Computational
region "i"

Coarse mesh Refinement Refinement Refinement
(fixed) 3/ 4

Memory Refinement I
available

to solution
values 111

Level I Level 2 Level 2 Level
3

Ref inemeni
Refinement 4 i

Lef tmost .

Records for refinement --- _ _ - _ _ _ "
refinements pointers

Refinement
3

Fields of
record:

base fine

I link r link
_Ref inement

coarse top "eI

Figure 4 Data Structure: XBL 822-172

Tree and Vector of Deques

(n m (n cn N m C4 c C n C4J %

r6 0 0% r-4 C4. 0 r- n-4 P-4 P4wm -4 M

m m40 P- % Ma%94 0 - ' 4 %0e-

co ~r- a . a ~ul 00 Gor- 0 ON0 r.
'A C4 LM 0 r C4 r%0 0~ Go 4 D % L

m1 C 4 .- I C4 V4 C4 4 m m

41 m P~~ -4 m~ 0 @ \0m 4TC
1%C c1 en * n0i - 0MO

L6 oC4 A4- A L4 'O4- (I 1;

10 1 1 11 111 1 1 1
-A 4 1 w- 0 i- 9-4 '- CA0 tLf4nV-1 94

x C4 C4 009-4 v-4 %0 r

C4 C C6C6 4 C 0; 0; 44 C4 4C4

5.4 lii en11 lniininc c c ne

5. ; .4 .4 C4 . .6 A *4 4.; r Z

z ~ ~ ~~ E,4- -41 MrcI O a e

v40I" P

P4 C 0 4 r4 0

0 C:4 Do%000

z0u

P-41
r-4 -4 @(v4 N 4 (4414N N n m n 94
04 a 0404 m awAd $ A4ad 4 0

0000 000000 0000 0000 00

m W

m m 1-

0

co,

0 0 "0 D00 00 coo 0000 "

W00 IIO

00 0 00C0000 00 0 0 'K1-

00b00 000000% wOO a%%

000 00 0 0 0 0 00NLA n

t 0 00 ~ 00 000 OO7% Ni-0It.3%O

* * * * * * * * 0 Nr

NhaNN N NNO
-: 0%O0%000 C co 42% 0

0

ON _jN Zo 00 .N L. Li~~ NoL j j6

N N -4J 00 n

N0%_a .A0 ~ * P" CO

%J 4. w t.it0N % 0Y% -'N QN0 Ns"

La-4I~j~J J $-AOU 00I-A -u"I-AI

kA 0-6 N
a, D y00 -4 w IQ11h 0)0 1

0 %a

00 i LA -4 % a '0 C3 %C U" . % &. N a-

N NI-A N0'N -4 0 w0 ccNwN a, f

p . "

Boundary Error Local M2 Maximum Time Memory
Estimation Error Error Error (sec.) Used

Approx. ETolerance

U/D Rich. .01 1.20-2 2.18-2 3.84 630
U/D diff. .01 1.21-2 2.18-2 3.87 630

extrap. diff. .01 1.18-2 2.18-2 3.93 642
U/D Rich. .001 8.02-4 1.34-3 42.3 1774
U/D diff. .001 8.02-4 1.34-3 41.9 1774

extrap, diff. .001 8.00-4 1.34-3 42.6 1814

Table 3. Error Estimation at Boundaries

" " " " " ' " -• " " T ~~~~~................""....................-'.,".'. ."..' . '............ ;

9-4

cc* 000000000000

'4

C..

E-1P"4 v4 M v-4"-4P4 P-4 v-4 44 o4 LMPP-%C rL'%

w 000000000000 0000000
43.*

0
"14

di
co

0 "4 "4 "4"4 "4P4"4 P4 4O4r C N M -4 4 4 "14 P- "
V4 u v-4"P4 4 4 4 r4 4 v4 4 94 C4 0008000 S

cw ow 000000000000 0000000 -

"-4

4)A P4r - nP 4 4P - 4C r C4 .J v4

E-4.-.' P

P4 0
r4 0

0
E-4

z0

""4

E-4

U.

wIn

z

mw

Cl C
mx

m C

rnd

,-%

oto

CW

* 5 * I ' ' I ' I ' I 'a ~ 9

A sin......e fe.. .

* SS...e..............~.

- -
fl*~*.~.n ~

A
~q4
1.5.z
'-.3-
Ii.3w

0
I-.

II-

U,

£1.5

W3b0
U,

' 4 ILW

zo

0
U

U)A ~ -.

3

a ~

S
* U

U 3 U!
0 0 7 7 1

x
q4

SO 4A....

C

XeX

I,' , , - ,

C)

- ---------- --- h

2. "f....

c. .. -- - *-* *.--

-ft -- - - - -pqf -

ml
"g 3> *2 ,* f t. ,- ,f, "

I n,0n

p i ' i 0

z

A *.-------------

A A. W ..

In

"-'. I, Z - ", "-

3 0

C

Co m

3>0

rn-vt..00

n

Srn3

to 2

* .* .s. ... ' *.*.~~,N * -

-Irk.

2wQ

Ifte

cuJ

CP

xX

UQ VI Al 05U

a 3>

Xe

,n

~crn

IW

mw Q E.

lz ata

z 0

cuz

,, .- - *-.- .. p * o •

x

rn.

M M

"T

'I•

co

LL.

m Z

s-I Lr
A - --. -.- -.- ~ .. .- -. . ~ - - - . - .I

ID .<C

3Ia

:E E

Iacme

;o m

c m* C C C

. . mm

m

o

n

-
,--

-

."_ ,.. "r o

'Eli

* o-~

I0

Lr

I0
to rC

fn 'n
c I S
M. U

S.rI1

* I

IC
I,, 0

*ff ---- ------ -

4x

CC

c A
3> WI

m

0

CD

oz0
-y - ------- ...

- .717

WI

ILL

2W

U . ~

czi

z

0
(A

S. , . I . , • , • , • , • , • -.

OC I

---- ---... . . -- _

S.. . .. e........

Doi.

*W

I 04

r
". z

*

1--0

": J --

..

* .0 c_ - - ---

%"n

• ' I ' I ' I ' I " I " I 3 .

1.0 .
°w

.... . . . I .

.U

WI

w

"I'

Ix~

! . ,

.. i

" " '"". ""

%**

" I"'-- I ... -I I-I

.-~~~~ ~.i ..

e

m

. LL

I x

'i " " - . "

CU,.,, .. ,... .ml .. h

w.

/ Ix

bull.

W=WQC(LU

